Feedback control of HIV antiviral therapy with long measurement time

In this presentation we apply a receding horizon observer to an HIV feedback control problem in order to derive optimal treatments of HIV pro- gression and/or optimal structured treatment interruptions (STI) in antiviral therapy that include drug-free periods of immune-mediated control of HIV. We use a nonlinear differential equation model which has been well-validated with clinical patient data and shown to have reliable predictive capabilities. The basic feedback control problem utilizes a tracking formulation (desired states for viral load and immune effector calculated from a healthy steady state for the model are tracked). Here we assume only very realistic observerables of CD4+ T cell count and viral load. Moreover, we use a second deterministic optimal tracking problem for state estimation as opposed to stochastic filtering approaches. In both of the optimization problems (for optimal feedback control and for state estimator) conjugate gradient algorithms are employed.

[1]  S. Lenhart,et al.  OPTIMIZING CHEMOTHERAPY IN AN HIV MODEL , 1998 .

[2]  Jian Yu,et al.  An optimization-based adaptive nonlinear observer , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[3]  José Álvarez-Ramírez,et al.  Feedback Control of the chemotherapy of HIV , 2000, Int. J. Bifurc. Chaos.

[4]  Adaptive optimal observers for dynamic nonlinear systems , 2002 .

[5]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[6]  D. Mayne,et al.  Moving horizon observers and observer-based control , 1995, IEEE Trans. Autom. Control..

[7]  S. Mitter,et al.  The conjugate gradient method for optimal control problems , 1967 .

[8]  Jorge Nocedal,et al.  Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..

[9]  D. Kirschner,et al.  Optimal control of the chemotherapy of HIV , 1997, Journal of mathematical biology.

[10]  B. Adams,et al.  HIV dynamics: Modeling, data analysis, and optimal treatment protocols , 2005 .

[11]  Harvey Thomas Banks,et al.  Receding Horizon Control of HIV , 2011 .

[12]  Jay H. Lee,et al.  Constrained linear state estimation - a moving horizon approach , 2001, Autom..

[13]  Harvey Thomas Banks,et al.  A state‐dependent Riccati equation‐based estimator approach for HIV feedback control , 2006 .

[14]  Jinhua Guo,et al.  A new algorithm of nonlinear conjugate gradient method with strong convergence , 2008 .

[15]  Shuhua Hu,et al.  A comparison of nonlinear filtering approaches in the context of an HIV model. , 2010, Mathematical biosciences and engineering : MBE.

[16]  Harvey Thomas Banks,et al.  HIV model analysis under optimal control based treatment strategies , 2008 .

[17]  Harvey Thomas Banks,et al.  Model fitting and prediction with HIV treatment interruption data , 2005 .

[18]  Guanrong Chen,et al.  Feedback control of a biodynamical model of HIV-1 , 2001, IEEE Transactions on Biomedical Engineering.

[19]  Ryan Zurakowski,et al.  A model predictive control based scheduling method for HIV therapy. , 2006, Journal of theoretical biology.

[20]  Duan Li,et al.  On Restart Procedures for the Conjugate Gradient Method , 2004, Numerical Algorithms.

[21]  C. V. Rao,et al.  Stability of constrained linear moving horizon estimation , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[22]  Chung Choo Chung,et al.  Optimal Scheduling of Drug Treatment for HIV Infection : Continuous Dose Control and Receding Horizon Control , 2003 .

[23]  A.R. Teel,et al.  HIV treatment scheduling via robust nonlinear model predictive control , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[24]  Jay H. Lee,et al.  Receding Horizon Recursive State Estimation , 1993, 1993 American Control Conference.

[25]  M. Alamir Optimization based non-linear observers revisited , 1999 .

[26]  B. Adams,et al.  Dynamic multidrug therapies for hiv: optimal and sti control approaches. , 2004, Mathematical biosciences and engineering : MBE.

[27]  Shuhua Hu,et al.  Modelling HIV immune response and validation with clinical data , 2008, Journal of biological dynamics.