Hierarchical Schur complement preconditioner for the stochastic Galerkin finite element methods

Use of the stochastic Galerkin finite element methods leads to large systems of linear equations obtained by the discretization of tensor product solution spaces along their spatial and stochastic dimensions. These systems are typically solved iteratively by a Krylov subspace method. We propose a preconditioner which takes an advantage of the recursive hierarchy in the structure of the global matrices. In particular, the matrices posses a recursive hierarchical two-by-two structure, with one of the submatrices block diagonal. Each one of the diagonal blocks in this submatrix is closely related to the deterministic mean-value problem, and the action of its inverse is in the implementation approximated by inner loops of Krylov iterations. Thus our hierarchical Schur complement preconditioner combines, on each level in the approximation of the hierarchical structure of the global matrix, the idea of Schur complement with loops for a number of mutually independent inner Krylov iterations, and several matrix-vector multiplications for the off-diagonal blocks. Neither the global matrix, nor the matrix of the preconditioner need to be formed explicitly. The ingredients include only the number of stiffness matrices from the truncated Karhunen-Lo\`{e}ve expansion and a good preconditioned for the mean-value deterministic problem. We provide a condition number bound for a model elliptic problem and the performance of the method is illustrated by numerical experiments.

[1]  Pascal Hénon,et al.  A Parallel Direct/Iterative Solver Based on a Schur Complement Approach , 2008, 2008 11th IEEE International Conference on Computational Science and Engineering.

[2]  Jun Zhang On Preconditioning Schur Complement and Schur Complement Preconditioning , 2000 .

[3]  Yvan Notay Flexible Conjugate Gradients , 2000, SIAM J. Sci. Comput..

[4]  R. Ghanem,et al.  Iterative solution of systems of linear equations arising in the context of stochastic finite elements , 2000 .

[5]  曹志浩,et al.  ON ALGEBRAIC MULTILEVEL PRECONDITIONING METHODS , 1993 .

[6]  H. Matthies,et al.  Hierarchical parallelisation for the solution of stochastic finite element equations , 2005 .

[7]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[8]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[9]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[10]  Howard C. Elman,et al.  Block-diagonal preconditioning for spectral stochastic finite-element systems , 2008 .

[11]  Jan Mandel,et al.  On block diagonal and Schur complement preconditioning , 1990 .

[12]  P. Vassilevski,et al.  Algebraic multilevel preconditioning methods. I , 1989 .

[13]  K. Chen,et al.  Matrix preconditioning techniques and applications , 2005 .

[14]  I. Babuska,et al.  Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation , 2005 .

[15]  Jan Mandel,et al.  Adaptive BDDC in three dimensions , 2009, Math. Comput. Simul..

[16]  Roger Ghanem,et al.  Numerical solution of spectral stochastic finite element systems , 1996 .

[17]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[18]  R. Ghanem The Nonlinear Gaussian Spectrum of Log-Normal Stochastic Processes and Variables , 1999 .

[19]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[20]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .

[21]  Yousef Saad,et al.  ARMS: an algebraic recursive multilevel solver for general sparse linear systems , 2002, Numer. Linear Algebra Appl..

[22]  Stefan Vandewalle,et al.  Iterative Solvers for the Stochastic Finite Element Method , 2008, SIAM J. Sci. Comput..

[23]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[24]  Johannes Kraus,et al.  Additive Schur Complement Approximation and Application to Multilevel Preconditioning , 2012, SIAM J. Sci. Comput..

[25]  Masha Sosonkina,et al.  pARMS: a parallel version of the algebraic recursive multilevel solver , 2003, Numer. Linear Algebra Appl..

[26]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[27]  Elisabeth Ullmann,et al.  Stochastic Galerkin Matrices , 2010, SIAM J. Matrix Anal. Appl..

[28]  Jinchao Xu,et al.  Domain decomposition methods in science and engineering XIX , 2011 .

[29]  O. Axelsson,et al.  Algebraic multilevel preconditioning methods, II , 1990 .

[30]  Jan Mandel,et al.  On Adaptive-Multilevel BDDC , 2010 .

[31]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[32]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[33]  Howard C. Elman,et al.  Efficient Iterative Solvers for Stochastic Galerkin Discretizations of Log-Transformed Random Diffusion Problems , 2012, SIAM J. Sci. Comput..

[34]  Catherine Elizabeth Powell,et al.  Efficient Solvers for a Linear Stochastic Galerkin Mixed Formulation of Diffusion Problems with Random Data , 2008, SIAM J. Sci. Comput..

[35]  O. Axelsson Iterative solution methods , 1995 .

[36]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[37]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..