The Epidemics of Donations: Logistic Growth and Power-Laws
暂无分享,去创建一个
[1] P. Verhulst. Recherches mathématiques sur la loi d’accroissement de la population , 1845, Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Bruxelles.
[2] W. O. Kermack,et al. A contribution to the mathematical theory of epidemics , 1927 .
[3] T. Schelling. Hockey Helmets, Concealed Weapons, and Daylight Saving , 1973 .
[4] F. Bass. A new product growth model for consumer durables , 1976 .
[5] Mark S. Granovetter. Threshold Models of Collective Behavior , 1978, American Journal of Sociology.
[6] Mark S. Granovetter,et al. Threshold models of diffusion and collective behavior , 1983 .
[7] In Ho Lee,et al. Noisy Contagion Without Mutation , 2000 .
[8] G. Breeuwsma. Geruchten als besmettelijke ziekte. Het succesverhaal van de Hush Puppies. Bespreking van Malcolm Gladwell, The tipping point. How little things can make a big difference. London: Little, Brown and Company, 2000 , 2000 .
[9] V. Eguíluz,et al. Transmission of information and herd Behavior: an application to financial markets. , 1999, Physical review letters.
[10] The social organisation of fish schools , 2001 .
[11] Alessandro Vespignani,et al. Epidemic spreading in scale-free networks. , 2000, Physical review letters.
[12] Heinz Mühlenbein,et al. Coordination of Decisions in a Spatial Agent Model , 2001, ArXiv.
[13] A. Tsoularis,et al. Analysis of logistic growth models. , 2002, Mathematical biosciences.
[14] Frank M. Bass,et al. A New Product Growth for Model Consumer Durables , 2004, Manag. Sci..
[15] A. Grabowski,et al. Epidemic spreading in a hierarchical social network. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[16] D. Meadows-Klue. The Tipping Point: How Little Things Can Make a Big Difference , 2004 .
[17] Peter Sheridan Dodds,et al. Universal behavior in a generalized model of contagion. , 2004, Physical review letters.
[18] B. Zheng,et al. Two-phase phenomena, minority games, and herding models. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[19] Frank Schweitzer,et al. Modeling Vortex Swarming In Daphnia , 2004, Bulletin of mathematical biology.
[20] V Schwämmle,et al. Different topologies for a herding model of opinion. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.