Classical BV formalism for group actions

We study the derived critical locus of a function f : [ X/G ] → A 1 K on the quotient stack of a smooth affine scheme X by the action of a smooth affine group scheme G . It is shown that dCrit( f ) ≃ [ Z/G ] is a derived quotient stack for a derived affine scheme Z , whose dg-algebra of functions is described explicitly. Our results generalize the classical BV formalism in finite dimensions from Lie algebra to group actions

[1]  Albin Grataloup A DERIVED LAGRANGIAN FIBRATION ON THE DERIVED CRITICAL LOCUS , 2020, Journal of the Institute of Mathematics of Jussieu.

[2]  Owen Gwilliam,et al.  Factorization Algebras in Quantum Field Theory , 2021 .

[3]  M. Anel,et al.  Shifted symplectic reduction of derived critical loci , 2021, 2106.06625.

[4]  Wai-kit Yeung Shifted symplectic and Poisson structures on global quotients , 2021, 2103.09491.

[5]  Damien Calaque,et al.  Derived Stacks in Symplectic Geometry , 2018, 1802.09643.

[6]  G. Vezzosi Basic structures on derived critical loci , 2020 .

[7]  M. Manetti,et al.  On Deformations of Diagrams of Commutative Algebras , 2019, 1902.10436.

[8]  M. Benini,et al.  Linear Yang–Mills Theory as a Homotopy AQFT , 2019, Communications in Mathematical Physics.

[9]  M. Benini,et al.  Higher Structures in Algebraic Quantum Field Theory , 2019, Fortschritte der Physik.

[10]  M. Benini,et al.  Homotopy theory of algebraic quantum field theories , 2018, Letters in Mathematical Physics.

[11]  D. Calaque Shifted cotangent stacks are shifted symplectic , 2016, Annales de la faculté des sciences de Toulouse Mathématiques.

[12]  S. Arkhipov,et al.  Homotopy limits in the category of dg-categories in terms of A ∞ -comodules , 2019 .

[13]  Friedrich Haslinger ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE , 2019 .

[14]  P. Safronov Poisson-Lie structures as shifted Poisson structures , 2017, Advances in Mathematics.

[15]  B. Toën,et al.  Shifted Poisson structures and deformation quantization , 2015, 1506.03699.

[16]  P. Safronov SYMPLECTIC IMPLOSION AND THE GROTHENDIECK-SPRINGER RESOLUTION , 2014, 1411.2962.

[17]  Owen Gwilliam,et al.  Factorization Algebras in Quantum Field Theory: Volume 1 , 2016 .

[18]  N. Reshetikhin,et al.  Perturbative Quantum Gauge Theories on Manifolds with Boundary , 2015, 1507.01221.

[19]  J. Pridham Shifted Poisson and symplectic structures on derived N ‐stacks , 2015, 1504.01940.

[20]  B. Toen Derived Algebraic Geometry and Deformation Quantization , 2014, 1403.6995.

[21]  A. S. Cattaneo,et al.  Classical BV Theories on Manifolds with Boundary , 2011, 1201.0290.

[22]  K. Fredenhagen,et al.  Batalin-Vilkovisky Formalism in the Functional Approach to Classical Field Theory , 2011, 1101.5112.

[23]  D. Nadler,et al.  Loop spaces and connections , 2010, 1002.3636.

[24]  B. Toën,et al.  Shifted symplectic structures , 2011, 1111.3209.

[25]  K. Fredenhagen,et al.  Batalin-Vilkovisky Formalism in Perturbative Algebraic Quantum Field Theory , 2011, Communications in Mathematical Physics.

[26]  R. Mehta Supergroupoids, double structures, and equivariant cohomology , 2006, math/0605356.

[27]  C. Berger,et al.  Combinatorial operad actions on cochains , 2001, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  M. Crainic Differentiable and algebroid cohomology, Van Est isomorphisms, and characteristic classes , 2000, math/0008064.

[29]  A. Weinstein,et al.  Extensions of symplectic groupoids and quantization. , 1991 .

[30]  I. Batalin,et al.  Gauge Algebra and Quantization , 1981 .