Classical BV formalism for group actions
暂无分享,去创建一个
[1] Albin Grataloup. A DERIVED LAGRANGIAN FIBRATION ON THE DERIVED CRITICAL LOCUS , 2020, Journal of the Institute of Mathematics of Jussieu.
[2] Owen Gwilliam,et al. Factorization Algebras in Quantum Field Theory , 2021 .
[3] M. Anel,et al. Shifted symplectic reduction of derived critical loci , 2021, 2106.06625.
[4] Wai-kit Yeung. Shifted symplectic and Poisson structures on global quotients , 2021, 2103.09491.
[5] Damien Calaque,et al. Derived Stacks in Symplectic Geometry , 2018, 1802.09643.
[6] G. Vezzosi. Basic structures on derived critical loci , 2020 .
[7] M. Manetti,et al. On Deformations of Diagrams of Commutative Algebras , 2019, 1902.10436.
[8] M. Benini,et al. Linear Yang–Mills Theory as a Homotopy AQFT , 2019, Communications in Mathematical Physics.
[9] M. Benini,et al. Higher Structures in Algebraic Quantum Field Theory , 2019, Fortschritte der Physik.
[10] M. Benini,et al. Homotopy theory of algebraic quantum field theories , 2018, Letters in Mathematical Physics.
[11] D. Calaque. Shifted cotangent stacks are shifted symplectic , 2016, Annales de la faculté des sciences de Toulouse Mathématiques.
[12] S. Arkhipov,et al. Homotopy limits in the category of dg-categories in terms of A ∞ -comodules , 2019 .
[13] Friedrich Haslinger. ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE , 2019 .
[14] P. Safronov. Poisson-Lie structures as shifted Poisson structures , 2017, Advances in Mathematics.
[15] B. Toën,et al. Shifted Poisson structures and deformation quantization , 2015, 1506.03699.
[16] P. Safronov. SYMPLECTIC IMPLOSION AND THE GROTHENDIECK-SPRINGER RESOLUTION , 2014, 1411.2962.
[17] Owen Gwilliam,et al. Factorization Algebras in Quantum Field Theory: Volume 1 , 2016 .
[18] N. Reshetikhin,et al. Perturbative Quantum Gauge Theories on Manifolds with Boundary , 2015, 1507.01221.
[19] J. Pridham. Shifted Poisson and symplectic structures on derived N ‐stacks , 2015, 1504.01940.
[20] B. Toen. Derived Algebraic Geometry and Deformation Quantization , 2014, 1403.6995.
[21] A. S. Cattaneo,et al. Classical BV Theories on Manifolds with Boundary , 2011, 1201.0290.
[22] K. Fredenhagen,et al. Batalin-Vilkovisky Formalism in the Functional Approach to Classical Field Theory , 2011, 1101.5112.
[23] D. Nadler,et al. Loop spaces and connections , 2010, 1002.3636.
[24] B. Toën,et al. Shifted symplectic structures , 2011, 1111.3209.
[25] K. Fredenhagen,et al. Batalin-Vilkovisky Formalism in Perturbative Algebraic Quantum Field Theory , 2011, Communications in Mathematical Physics.
[26] R. Mehta. Supergroupoids, double structures, and equivariant cohomology , 2006, math/0605356.
[27] C. Berger,et al. Combinatorial operad actions on cochains , 2001, Mathematical Proceedings of the Cambridge Philosophical Society.
[28] M. Crainic. Differentiable and algebroid cohomology, Van Est isomorphisms, and characteristic classes , 2000, math/0008064.
[29] A. Weinstein,et al. Extensions of symplectic groupoids and quantization. , 1991 .
[30] I. Batalin,et al. Gauge Algebra and Quantization , 1981 .