A Mass Conserving Mixed hp-FEM Scheme for Stokes Flow. Part III: Implementation and Preconditioning

This is the third part in a series on a mass conserving, high order, mixed finite element method for Stokes flow. In this part, we study a block-diagonal preconditioner for the indefinite Schur complement system arising from the discretization of the Stokes equations using these elements. The underlying finite element method is uniformly stable in both the mesh size h and polynomial order p, and we prove bounds on the eigenvalues of the preconditioned system which are independent of h and grow modestly in p. The analysis relates the Schur complement system to an appropriate variational setting with subspaces for which exact sequence properties and inf-sup stability hold. Several numerical examples demonstrate agreement with the theoretical results.

[1]  Richard S. Falk,et al.  Stokes Complexes and the Construction of Stable Finite Elements with Pointwise Mass Conservation , 2013, SIAM J. Numer. Anal..

[2]  Mark Ainsworth,et al.  Domain decomposition preconditioners for p and hp finite element approximation of Stokes equations , 1999 .

[3]  Mark Ainsworth,et al.  A uniformly stable family of mixed hp‐finite elements with continuous pressures for incompressible flow , 2002 .

[4]  O. Widlund Domain Decomposition Algorithms , 1993 .

[5]  J. Wang,et al.  Analysis of the Schwarz algorithm for mixed finite elements methods , 1992 .

[6]  Andrew J. Wathen,et al.  Fast iterative solution of stabilised Stokes systems, part I: using simple diagonal preconditioners , 1993 .

[7]  Elwood T. Olsen,et al.  Bounds on spectral condition numbers of matrices arising in the $p$-version of the finite element method , 1995 .

[8]  Mark Ainsworth,et al.  Conditioning of Hierarchic p-Version Nédélec Elements on Meshes of Curvilinear Quadrilaterals and Hexahedra , 2003, SIAM J. Numer. Anal..

[9]  Tarek P. Mathew,et al.  Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems, part II: Convergence theory , 1993 .

[10]  Olof B. Widlund,et al.  Iterative Substructuring Methods for Spectral Element Discretizations of Elliptic Systems. II: Mixed Methods for Linear Elasticity and Stokes Flow , 1999, SIAM J. Numer. Anal..

[11]  Anthony T. Patera,et al.  Analysis of Iterative Methods for the Steady and Unsteady Stokes Problem: Application to Spectral Element Discretizations , 1993, SIAM J. Sci. Comput..

[12]  Abani K. Patra,et al.  Non-overlapping domain decomposition methods for adaptive hp approximations of the Stokes problem with discontinuous pressure fields , 1997 .

[13]  L. Pavarino,et al.  Overlapping Schwarz methods for mixed linear elasticity and Stokes problems , 1998 .

[14]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[15]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[16]  C. Simader,et al.  Direct methods in the theory of elliptic equations , 2012 .

[17]  Clemens Pechstein,et al.  Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems , 2012, Lecture Notes in Computational Science and Engineering.

[18]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[19]  Luca F. Pavarino,et al.  Preconditioned Mixed Spectral Element Methods for Elasticity and Stokes Problems , 1998, SIAM J. Sci. Comput..

[20]  Shuai Jiang,et al.  Preconditioning the Mass Matrix for High Order Finite Element Approximation on Triangles , 2019, SIAM J. Numer. Anal..

[21]  J. Pasciak,et al.  A domain decomposition technique for Stokes problems , 1990 .

[22]  Axel Klawonn,et al.  Block-Triangular Preconditioners for Saddle Point Problems with a Penalty Term , 1998, SIAM J. Sci. Comput..

[23]  Mark Ainsworth,et al.  Preconditioning high order H2 conforming finite elements on triangles , 2021, Numerische Mathematik.

[24]  H. K. Moffatt Viscous and resistive eddies near a sharp corner , 1964, Journal of Fluid Mechanics.

[25]  Mark Ainsworth,et al.  Mass Conserving Mixed hp-FEM Approximations to Stokes Flow. Part I: Uniform Stability , 2021, SIAM J. Numer. Anal..

[26]  Christine Bernardi,et al.  Properties of some weighted Sobolev spaces and application to spectral approximations , 1989 .

[27]  Tarek P. Mathew,et al.  Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems, part I: Algorithms and numerical results , 1993 .

[28]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[29]  I. Babuska,et al.  Efficient preconditioning for the p -version finite element method in two dimensions , 1991 .

[30]  Mark Ainsworth,et al.  Mass Conserving Mixed hp-FEM Approximations to Stokes Flow. Part II: Optimal Convergence , 2021, SIAM J. Numer. Anal..