Chiral Brønsted Acid‐Catalyzed Enantioselective α‐Amidoalkylation Reactions: A Joint Experimental and Predictive Study

Abstract Enamides with a free NH group have been evaluated as nucleophiles in chiral Brønsted acid‐catalyzed enantioselective α‐amidoalkylation reactions of bicyclic hydroxylactams for the generation of quaternary stereocenters. A quantitative structure–reactivity relationship (QSRR) method has been developed to find a useful tool to rationalize the enantioselectivity in this and related processes and to orient the catalyst choice. This correlative perturbation theory (PT)‐QSRR approach has been used to predict the effect of the structure of the substrate, nucleophile, and catalyst, as well as the experimental conditions, on the enantioselectivity. In this way, trends to improve the experimental results could be found without engaging in a long‐term empirical investigation.

[1]  Eider Aranzamendi,et al.  Perturbation theory model of reactivity and enantioselectivity of palladium-catalyzed Heck–Heck cascade reactions , 2016 .

[2]  R. Álvarez,et al.  Exploiting the Multidentate Nature of Chiral Disulfonimides in a Multicomponent Reaction for the Asymmetric Synthesis of Pyrrolo[1,2-a]indoles: A Remarkable Case of Enantioinversion. , 2016, Angewandte Chemie.

[3]  M. Terada,et al.  Study of Stereocontrolling Elements in Chiral Phosphoric Acid Catalyzed Addition Reaction of Vinylindoles with Azlactones , 2016, Synlett.

[4]  Chun Zhang,et al.  Enantioselective Dehydrogenative Heck Arylations of Trisubstituted Alkenes with Indoles to Construct Quaternary Stereocenters. , 2015, Journal of the American Chemical Society.

[5]  Zheng Huang,et al.  A Quinine-Squaramide Catalyzed Enantioselective Aza-Friedel-Crafts Reaction of Cyclic Trifluoromethyl Ketimines with Naphthols and Electron-Rich Phenols. , 2015, Organic letters.

[6]  Y. Ota,et al.  Chiral Brønsted acid-catalyzed enantioselective Friedel–Crafts reaction of 2-methoxyfuran with aliphatic ketimines generated in situ , 2015, Chemical science.

[7]  M. Bonn,et al.  Role of Ion-Pairs in Brønsted Acid Catalysis , 2015 .

[8]  T. Akiyama,et al.  Stronger Brønsted Acids: Recent Progress. , 2015, Chemical reviews.

[9]  F. Shi,et al.  Recent Advances in Chiral Phosphoric Acid Catalyzed Asymmetric Reactions for the Synthesis of Enantiopure Indole Derivatives , 2015, Synthesis.

[10]  Matthew S. Sigman,et al.  Alkenyl carbonyl derivatives in enantioselective redox relay Heck reactions: accessing α,β-unsaturated systems. , 2015, Journal of the American Chemical Society.

[11]  C. Vila,et al.  Organocatalytic asymmetric addition of naphthols and electron-rich phenols to isatin-derived ketimines: highly enantioselective construction of tetrasubstituted stereocenters. , 2015, Angewandte Chemie.

[12]  N. Cramer,et al.  Chiral Cyclopentadienyls: Enabling Ligands for Asymmetric Rh(III)-Catalyzed C-H Functionalizations. , 2015, Accounts of chemical research.

[13]  V. Srinivasapriyan,et al.  Synthesis of Condensed Tetrahydroisoquinoline Class of Alkaloids by Employing TfOH‐Mediated Imide Carbonyl Activation , 2015 .

[14]  Pengfei Li,et al.  Organocatalytic enantioselective Friedel-Crafts reaction: an efficient access to chiral isoindolo-β-carboline derivatives. , 2015, Organic & biomolecular chemistry.

[15]  F. Dean Toste,et al.  A data-intensive approach to mechanistic elucidation applied to chiral anion catalysis , 2015, Science.

[16]  C. Thirunavukkarasu,et al.  Synthesis and biological evaluation of isoindoloisoquinolinone, pyroloisoquinolinone and benzoquinazolinone derivatives as poly(ADP-ribose) polymerase-1 inhibitors. , 2015, Bioorganic & medicinal chemistry.

[17]  R. Dalpozzo Strategies for the asymmetric functionalization of indoles: an update. , 2015, Chemical Society reviews.

[18]  H. Rao,et al.  Copper-catalyzed C(sp3)-OH cleavage with concomitant C-C coupling: synthesis of 3-substituted isoindolinones. , 2015, The Journal of organic chemistry.

[19]  Lei Shi,et al.  Promising Combination for Asymmetric Organocatalysis: Brønsted Acid‐Assisted Chiral Phosphoric Acid Catalysis , 2014 .

[20]  E. N. Bess,et al.  Designer substrate library for quantitative, predictive modeling of reaction performance , 2014, Proceedings of the National Academy of Sciences.

[21]  Huifeng Yue,et al.  Correlating the effects of the N-substituent sizes of chiral 1,2-amino phosphinamide ligands on enantioselectivities in catalytic asymmetric Henry reaction using physical steric parameters. , 2014, The Journal of organic chemistry.

[22]  B. Luan,et al.  Controlled transport of DNA through a Y-shaped carbon nanotube in a solid membrane. , 2014, Nanoscale.

[23]  M. Rueping,et al.  Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. , 2014, Chemical reviews.

[24]  Sujit Roy,et al.  Multimetallic Iridium-Tin (Ir-Sn3) Catalyst in N-Acyliminium Ion Chemistry: Synthesis of 3-Substituted Isoindolinones via Intra- and Intermolecular Amidoalkylation Reaction , 2014 .

[25]  Rikard Larsson,et al.  The role of PI3K/AKT-related PIP5K1α and the discovery of its selective inhibitor for treatment of advanced prostate cancer , 2014, Proceedings of the National Academy of Sciences.

[26]  F. Shi,et al.  Organocatalytic chemo-, (E/Z)- and enantioselective formal alkenylation of indole-derived hydroxylactams using o-hydroxystyrenes as a source of alkenyl group. , 2014, The Journal of organic chemistry.

[27]  T. Akiyama,et al.  Chiral phosphoric-acid-catalyzed transfer hydrogenation of ethyl ketimine derivatives by using benzothiazoline. , 2014, Chemistry.

[28]  Sonia Arrasate,et al.  Matrix trace operators: from spectral moments of molecular graphs and complex networks to perturbations in synthetic reactions, micelle nanoparticles, and drug ADME processes. , 2014, Current drug metabolism.

[29]  Guncheol Kim,et al.  Conversion of oxazolidinediones to isoindoloisoquinolinones via intramolecular Friedel–Crafts reaction. , 2014, The Journal of organic chemistry.

[30]  T. Kano,et al.  Chiral Brønsted acid-catalyzed enantioselective addition of indoles to ketimines. , 2014, Organic & biomolecular chemistry.

[31]  P. Kittakoop,et al.  Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation. , 2013, Current topics in medicinal chemistry.

[32]  Rangappa S. Keri,et al.  Enantioselective reactions of N-acyliminium ions using chiral organocatalysts. , 2013, Chemistry, an Asian journal.

[33]  Jun‐An Ma,et al.  Chiral Phosphoric Acid‐Catalyzed Asymmetric Aza‐Friedel–Crafts Reaction of Indoles with Cyclic N‐Acylketimines: Enantioselective Synthesis of Trifluoromethyldihydroquinazolines , 2013 .

[34]  T. Magauer,et al.  The chemistry of isoindole natural products , 2013, Beilstein journal of organic chemistry.

[35]  M. Paixão,et al.  Terpene‐Derived Bifunctional Thioureas in Asymmetric Organocatalysis , 2013 .

[36]  S. Tsogoeva,et al.  Bifunctional primary amine-thioureas in asymmetric organocatalysis. , 2013, Organic & biomolecular chemistry.

[37]  T. Akiyama,et al.  Brønsted Acids: Chiral Phosphoric Acid Catalysts in Asymmetric Synthesis , 2013 .

[38]  J. Campagne,et al.  Organocatalyzed Asymmetric Arylation and Heteroarylation Reactions , 2013 .

[39]  Peter R. Schreiner,et al.  Brønsted Acids: Chiral (Thio)urea Derivatives , 2013 .

[40]  T. Akiyama,et al.  Chiral phosphoric acid-catalyzed oxidative kinetic resolution of indolines based on transfer hydrogenation to imines. , 2013, Journal of the American Chemical Society.

[41]  Sonia Arrasate,et al.  General theory for multiple input-output perturbations in complex molecular systems. 1. Linear QSPR electronegativity models in physical, organic, and medicinal chemistry. , 2013, Current topics in medicinal chemistry.

[42]  S. You,et al.  Asymmetric synthesis of tetrahydro-β-carbolines via chiral phosphoric acid catalyzed transfer hydrogenation reaction. , 2013, Organic letters.

[43]  M. Yamanaka,et al.  DFT study of the mechanism and origin of enantioselectivity in chiral BINOL-phosphoric acid catalyzed transfer hydrogenation of ketimine and α-imino ester using benzothiazoline. , 2013, The Journal of organic chemistry.

[44]  Long He,et al.  Chiral Phosphoric Acid‐Catalyzed Enantioselective Aza‐Friedel–Crafts Alkylation of Indoles with γ‐Hydroxy‐γ‐lactams , 2013 .

[45]  M. Sigman,et al.  Using physical organic parameters to correlate asymmetric catalyst performance. , 2013, The Journal of organic chemistry.

[46]  Matthew S Sigman,et al.  Prediction of catalyst and substrate performance in the enantioselective propargylation of aliphatic ketones by a multidimensional model of steric effects. , 2013, Journal of the American Chemical Society.

[47]  B. List,et al.  Asymmetrische Gegenanionen‐vermittelte Katalyse: Konzept, Definition und Anwendungen , 2013 .

[48]  B. List,et al.  Asymmetric counteranion-directed catalysis: concept, definition, and applications. , 2013, Angewandte Chemie.

[49]  S. Luo,et al.  Asymmetric binary acid catalysis: chiral phosphoric acid as dual ligand and acid. , 2013, Chemical communications.

[50]  Liliana Boiaryna,et al.  Dual hard/soft gold catalysis: intermolecular Friedel-Crafts-type α-amidoalkylation/alkyne hydroarylation sequences by N-acyliminium ion chemistry. , 2012, Chemistry.

[51]  Manuel Urbano-Cuadrado,et al.  Predicting the enantioselectivity of the copper-catalysed cyclopropanation of alkenes by using quantitative quadrant-diagram representations of the catalysts. , 2012, Chemistry.

[52]  G. L. Hamilton,et al.  The progression of chiral anions from concepts to applications in asymmetric catalysis. , 2012, Nature chemistry.

[53]  Wenjin Yan,et al.  The highly enantioselective addition of indoles and pyrroles to isatins-derived N-Boc ketimines catalyzed by chiral phosphoric acids. , 2012, Chemical communications.

[54]  Elizabeth N. Bess,et al.  Multidimensional steric parameters in the analysis of asymmetric catalytic reactions. , 2012, Nature chemistry.

[55]  Chris de Graaf,et al.  Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands. , 2012, Nature chemical biology.

[56]  N. Sotomayor,et al.  Enantioselective intramolecular α-amidoalkylation reaction in the synthesis of pyrrolo[2,1-a]isoquinolines , 2012 .

[57]  Raquel P. Herrera,et al.  Hydrogen Bonds as an Alternative Activation , 2012 .

[58]  A. Minami,et al.  Pictet-Spenglerase involved in tetrahydroisoquinoline antibiotic biosynthesis. , 2012, Current opinion in chemical biology.

[59]  Eider Aranzamendi,et al.  Brønsted acid catalyzed enantioselective α-amidoalkylation in the synthesis of isoindoloisoquinolines. , 2012, The Journal of organic chemistry.

[60]  C. Zhai,et al.  A Novel Method for Synthesizing N‐Alkoxycarbonyl Aryl α‐Imino Esters and Their Applications in Enantioselective Transformations , 2012 .

[61]  Jin Song,et al.  Core-structure-oriented asymmetric organocatalytic substitution of 3-hydroxyoxindoles: application in the enantioselective total synthesis of (+)-folicanthine. , 2012, Angewandte Chemie.

[62]  S. S. Chimni,et al.  Aromatic hydroxyl group—a hydrogen bonding activator in bifunctional asymmetric organocatalysis , 2012 .

[63]  Jian Wang,et al.  Asymmetric organocatalytic reactions by bifunctional amine-thioureas , 2011 .

[64]  M. Sigman,et al.  Three-Dimensional Correlation of Steric and Electronic Free Energy Relationships Guides Asymmetric Propargylation , 2011, Science.

[65]  H. Waldmann,et al.  The Pictet-Spengler reaction in nature and in organic chemistry. , 2011, Angewandte Chemie.

[66]  Andrey P. Antonchick,et al.  Die Pictet‐Spengler‐Reaktion in der Natur und der organischen Chemie , 2011 .

[67]  Magnus Rueping,et al.  Modulation der Acidität – hoch acide Brønsted‐Säuren in der asymmetrischen Katalyse , 2011 .

[68]  B. Nachtsheim,et al.  Modulating the acidity: highly acidic Brønsted acids in asymmetric catalysis. , 2011, Angewandte Chemie.

[69]  N. Sotomayor,et al.  Strategies Based on Aryllithium and N‐Acyliminium Ion Cyclizations for the Stereocontrolled Synthesis of Alkaloids and Related Systems , 2011 .

[70]  M. Terada Enantioselective Carbon-Carbon Bond Forming Reactions Catalyzed by Chiral Phosphoric Acid Catalysts , 2011 .

[71]  Yingwei Zhao,et al.  Enantioselective N-H functionalization of indoles with α,β-unsaturated γ-lactams catalyzed by chiral Brønsted acids. , 2011, Angewandte Chemie.

[72]  S. You,et al.  Chiral phosphoric acid-catalysed Friedel–Crafts alkylation reaction of indoles with racemic spiro indolin-3-ones , 2011 .

[73]  Y. Wang,et al.  Organocatalyzed Enantioselective Synthesis of Quaternary Carbon‐Containing Isoindolin‐1‐ones , 2011 .

[74]  S. Schenker,et al.  Developments in Chiral Binaphthyl-Derived Bronsted/Lewis Acids and Hydrogen-Bond-Donor Organocatalysis , 2011 .

[75]  Karolina Pulka Pictet-Spengler reactions for the synthesis of pharmaceutically relevant heterocycles. , 2011, Current opinion in drug discovery & development.

[76]  A. Nuñez,et al.  Asymmetric Brønsted Acid-Catalyzed Friedel-Crafts Reactions of Indoles with Cyclic Imines - Efficient Generation of Nitrogen- Substituted Quaternary Carbon Centers , 2011 .

[77]  J. Goodman,et al.  A model for the enantioselectivity of imine reactions catalyzed by BINOL-phosphoric acid catalysts. , 2011, The Journal of organic chemistry.

[78]  Y. Wang,et al.  Chiral Phosphoric Acid Catalyzed Asymmetric Friedel–Crafts Alkylation of Indole with 3‐Hydroxyisoindolin‐1‐one: Enantio­selective Synthesis of 3‐Indolyl‐Substituted Isoindolin‐1‐ones , 2011 .

[79]  Matthew S Sigman,et al.  Predicting and optimizing asymmetric catalyst performance using the principles of experimental design and steric parameters , 2011, Proceedings of the National Academy of Sciences.

[80]  C. Bolm,et al.  Enantioselective organocatalytic synthesis of quaternary α-amino acids bearing a CF3 moiety. , 2011, Organic letters.

[81]  S. Schenker,et al.  Chiral BINOL-derived phosphoric acids: privileged Brønsted acid organocatalysts for C-C bond formation reactions. , 2010, Organic & biomolecular chemistry.

[82]  M. Meldal,et al.  N‐acyliminium intermediates in solid‐phase synthesis , 2010, Biopolymers.

[83]  M. Terada Chiral Phosphoric Acids asVersatile Catalysts for Enantioselective Transformations , 2010 .

[84]  J. Campagne,et al.  Organocatalyzed Asymmetric Friedel–Crafts Reactions , 2010 .

[85]  Y. Takemoto Development of chiral thiourea catalysts and its application to asymmetric catalytic reactions. , 2010, Chemical & pharmaceutical bulletin.

[86]  J. Goodman,et al.  DFT study on the factors determining the enantioselectivity of Friedel-Crafts reactions of indole with N-acyl and N-tosylimines catalyzed by BINOL-phosphoric acid derivatives. , 2010, The Journal of organic chemistry.

[87]  Liu Song,et al.  Highly enantioselective alkylation reaction of enamides by Brønsted-acid catalysis. , 2009, Organic letters.

[88]  M. Zeng,et al.  Chiral Brønsted acid catalyzed Friedel-Crafts alkylation reactions. , 2009, Chemical Society reviews.

[89]  M. Bandini,et al.  Catalytic Asymmetric Friedel–Crafts Alkylations , 2009 .

[90]  B. List,et al.  A powerful chiral counteranion motif for asymmetric catalysis. , 2009, Angewandte Chemie.

[91]  Jerzy Leszczynski,et al.  SMILES‐based optimal descriptors: QSAR analysis of fullerene‐based HIV‐1 PR inhibitors by means of balance of correlations , 2009, J. Comput. Chem..

[92]  Maykel Pérez González,et al.  Applications of 2D descriptors in drug design: a DRAGON tale. , 2008, Current topics in medicinal chemistry.

[93]  Fahmi Himo,et al.  Phosphoric acid catalyzed enantioselective transfer hydrogenation of imines: a density functional theory study of reaction mechanism and the origins of enantioselectivity. , 2008, Chemistry.

[94]  S. Tsogoeva,et al.  Highly enantioselective organocatalytic formation of a quaternary carbon center via chiral Brønsted acid catalyzed self-coupling of enamides. , 2008, Chemical communications.

[95]  J. Goodman,et al.  Theoretical study of the mechanism of hantzsch ester hydrogenation of imines catalyzed by chiral BINOL-phosphoric acids. , 2008, Journal of the American Chemical Society.

[96]  Sonia Arrasate,et al.  Stereoselective synthesis of thiaerythrinanes based on an α-amidoalkylation/RCM approach , 2008 .

[97]  Emilio Benfenati,et al.  SMILES in QSPR/QSAR Modeling: results and perspectives. , 2007, Current drug discovery technologies.

[98]  Shou‐Fei Zhu,et al.  Chiral Brønsted acid catalyzed enantioselective Friedel-Crafts reaction of indoles and alpha-aryl enamides: construction of quaternary carbon atoms. , 2007, Angewandte Chemie.

[99]  A. Daïch,et al.  Intermolecular and intramolecular alpha-amidoalkylation reactions using bismuth triflate as the catalyst. , 2007, The Journal of organic chemistry.

[100]  Lourdes Santana,et al.  QSAR study of anticoccidial activity for diverse chemical compounds: prediction and experimental assay of trans-2-(2-nitrovinyl)furan. , 2007, Bioorganic & medicinal chemistry.

[101]  Luc De Raedt,et al.  SMIREP: Predicting Chemical Activity from SMILES , 2006, J. Chem. Inf. Model..

[102]  Stephen J. Connon Chirale Phosphorsäuren: wirksame Organokatalysatoren für asymmetrische Additionen an Imine , 2006 .

[103]  S. Connon Chiral phosphoric acids: powerful organocatalysts for asymmetric addition reactions to imines. , 2006, Angewandte Chemie.

[104]  J. Antilla,et al.  Brønsted acid-catalyzed imine amidation. , 2005, Journal of the American Chemical Society.

[105]  T. Akiyama,et al.  Enantioselective Mannich-type reaction catalyzed by a chiral bronsted acid derived from TADDOL , 2005 .

[106]  Paola Gramatica,et al.  Statistically Validated QSARs, Based on Theoretical Descriptors, for Modeling Aquatic Toxicity of Organic Chemicals in Pimephales promelas (Fathead Minnow) , 2005, J. Chem. Inf. Model..

[107]  F. Csende,et al.  Advanced Methods for the Synthesis of 3-Substituted 1H-Isoindol-1-ones , 2005 .

[108]  A. Couture,et al.  Construction of the Six‐ and Five‐Membered Aza‐Heterocyclic Units of the Isoindoloisoquinolone Nucleus by Parham‐Type Cyclization Sequences –Total Synthesis of Nuevamine , 2005 .

[109]  J. Atack The benzodiazepine binding site of GABAA receptors as a target for the development of novel anxiolytics , 2005, Expert opinion on investigational drugs.

[110]  Lourdes Santana,et al.  Design, synthesis and photobiological properties of 3,4-cyclopentenepsoralens. , 2005, Bioorganic & medicinal chemistry.

[111]  M. Chrzanowska,et al.  Asymmetric synthesis of isoquinoline alkaloids. , 2004, Chemical reviews.

[112]  Nuria Sotomayor,et al.  Enantiodivergent synthesis of pyrrolo[2,1-a]isoquinolines based on diastereoselective Parham cyclization and alpha-amidoalkylation reactions. , 2004, The Journal of organic chemistry.

[113]  M. Terada,et al.  Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. , 2004, Journal of the American Chemical Society.

[114]  Junji Itoh,et al.  Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. , 2004, Angewandte Chemie.

[115]  N. Sotomayor,et al.  Tandem Parham cyclisation––α-amidoalkylation reaction in the synthesis of the isoindolo[1,2-a]isoquinoline skeleton of nuevamine-type alkaloids , 2004 .

[116]  Y. Takemoto,et al.  Enantioselective Michael reaction of malonates to nitroolefins catalyzed by bifunctional organocatalysts. , 2003, Journal of the American Chemical Society.

[117]  A. Padwa,et al.  A short diastereoselective synthesis of the putative alkaloid jamtine, using a tandem pummerer/mannich cyclization sequence. , 2003, The Journal of organic chemistry.

[118]  Robin M. Williams,et al.  Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. , 2002, Chemical reviews.

[119]  N. Sotomayor,et al.  Highly Diastereoselective Intramolecular α-Amidoalkylation Reactions of Hydroxylactams Derived from N-Phenethylimides. Enantioselective Synthesis of Dihydropyrrolo[2,1-a] isoquinolones , 2002 .

[120]  Jos Tissen,et al.  Iterated Reaction Graphs: Simulating Complex Maillard Reaction Pathways , 2001, J. Chem. Inf. Comput. Sci..

[121]  N. Sotomayor,et al.  Stereodivergent Synthesis of Hetero‐Fused Isoquinolines by Acyliminium and Metallation Methods , 2001 .

[122]  H. V. Van Tol,et al.  The dopamine D(4) receptor: one decade of research. , 2000, European journal of pharmacology.

[123]  W. Nico Speckamp,et al.  New developments in the chemistry of N-acyliminium ions and related intermediates. , 2000 .

[124]  T. Heffner,et al.  Isoindolinone enantiomers having affinity for the dopamine D4 receptor. , 1998, Bioorganic & medicinal chemistry letters.

[125]  Eric N. Jacobsen,et al.  SCHIFF BASE CATALYSTS FOR THE ASYMMETRIC STRECKER REACTION IDENTIFIED AND OPTIMIZED FROM PARALLEL SYNTHETIC LIBRARIES , 1998 .

[126]  Johann Gasteiger,et al.  Classification of Organic Reactions: Similarity of Reactions Based on Changes in the Electronic Features of Oxygen Atoms at the Reaction Sites1 , 1998, J. Chem. Inf. Comput. Sci..

[127]  David Weininger,et al.  CHORTLES: A Method for Representing Oligomeric and Template-Based Mixtures , 1995, J. Chem. Inf. Comput. Sci..

[128]  David Weininger,et al.  CHUCKLES: A method for representing and searching peptide and peptoid sequences on both monomer and atomic levels , 1994, J. Chem. Inf. Comput. Sci..

[129]  M. Charton Steric effects. 7. Additional V constants , 1976 .

[130]  M. Charton,et al.  Steric effects. II. Base-catalyzed ester hydrolysis , 1975 .

[131]  M. Charton,et al.  Steric effects. III. Bimolecular nucleophilic substitution , 1975 .

[132]  M. Charton,et al.  Steric effects. I. Esterification and acid-catalyzed hydrolysis of esters , 1975 .

[133]  L. Hammett,et al.  Some Relations between Reaction Rates and Equilibrium Constants. , 1935 .

[134]  B. Pignataro New strategies in chemical synthesis and catalysis , 2012 .

[135]  H. Rommelspacher,et al.  Isoquinolines And Beta-Carbolines As Neurotoxins And Neuroprotectants , 2012, Current Topics in Neurotoxicity.

[136]  Hisashi Yamamoto,et al.  Bifunctional Acid Catalysts for Organic Synthesis , 2011 .

[137]  Maykel Cruz-Monteagudo,et al.  Markov Entropy Centrality: Chemical, Biological, Crime, and Legislative Networks , 2011, Towards an Information Theory of Complex Networks.

[138]  B. List,et al.  Chiral Brønsted acids for asymmetric organocatalysis. , 2010, Topics in current chemistry.

[139]  Manuela Pavan,et al.  DRAGON SOFTWARE: AN EASY APPROACH TO MOLECULAR DESCRIPTOR CALCULATIONS , 2006 .

[140]  H. Hiemstra,et al.  Intramolecular reactions of N-acyliminium intermediates , 1985 .

[141]  L. Hammett The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives , 1937 .