Identification of continuous-time linear systems with time-delay

This paper addresses the identification problem of time-delay linear continuous-time systems. More specifically, the involved parameters and time-delay are jointly estimated using a suitable adaptive observer. The latter heavily borrows from the high gain observer design that has been widely investigated throughout the last decade. Global exponential convergence of the parameters and time delay estimates to their trues values is established under an appropriate persistent excitation property. The performance of the proposed identification approach is demonstrated by a simulation study involving an academic example.

[1]  Mohammed M'Saad,et al.  Adaptive observers for nonlinearly parameterized class of nonlinear systems , 2009, Autom..

[2]  Toshiharu Sugie,et al.  Iterative identification method for linear continuous-time systems , 2008, Proceedings of the 45th IEEE Conference on Decision and Control.

[3]  M. Farza,et al.  A set of adaptive observers for a class of MIMO nonlinear systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[4]  Mondher Farza,et al.  A SET OF OBSERVERS FOR A CLASS OF NONLINEAR SYSTEMS , 2005 .

[5]  Qinghua Zhang,et al.  Nonlinear system fault diagnosis based on adaptive estimation , 2004, Autom..

[6]  Mohammed M'Saad,et al.  Observer design for a class of MIMO nonlinear systems , 2004, Autom..

[7]  S. Bjorklund,et al.  A review of time-delay estimation techniques , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[8]  H. Hammouri,et al.  Nonlinear observers for locally uniformly observable systems , 2003 .

[9]  Hugues Garnier,et al.  Continuous-time model identification from sampled data: Implementation issues and performance evaluation , 2003 .

[10]  M. Fliess,et al.  An algebraic framework for linear identification , 2003 .

[11]  Qinghua Zhang,et al.  Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems , 2002, IEEE Trans. Autom. Control..

[12]  P. Young Optimal IV identification and estimation of continuous-time TF models , 2002 .

[13]  Qinghua Zhang,et al.  Adaptive observer with exponential forgetting factor for linear time varying systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[14]  K. Busawon,et al.  A nonlinear observer for induction motors , 2001 .

[15]  Peter J. Gawthrop,et al.  On the estimation of continuous time transfer functions , 2001 .

[16]  G. Besançon Remarks on nonlinear adaptive observer design , 2000 .

[17]  Torsten Söderström,et al.  Performance evaluation of methods for identifying continuous-time autoregressive processes , 2000, Autom..

[18]  H. Hammouri,et al.  State observation of a nonlinear system: Application to (bio)chemical processes , 1999 .

[19]  M. Farza,et al.  Simple nonlinear observers for on-line estimation of kinetic rates in bioreactors , 1998, Autom..

[20]  Heinz Unbehauen,et al.  A review of identification in continuous-time systems , 1998 .

[21]  Rolf Johansson,et al.  Stochastic theory of continuous-time state-space identification , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[22]  T. Söderström,et al.  Least squares parameter estimation of continuous-time ARX models from discrete-time data , 1997, IEEE Trans. Autom. Control..

[23]  R. Rajamani,et al.  A systematic approach to adaptive observer synthesis for nonlinear systems , 1995, Proceedings of Tenth International Symposium on Intelligent Control.

[24]  Rajesh Rajamani,et al.  Adaptive observers for active automotive suspensions: theory and experiment , 1995, IEEE Trans. Control. Syst. Technol..

[25]  Rolf Johansson,et al.  Identification of continuous-time models , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[26]  J. Gauthier,et al.  Exponentially converging observers for distillation columns and internal stability of the dynamic output feedback , 1992 .

[27]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[28]  Heinz Unbehauen,et al.  Continuous-time approaches to system identification - A survey , 1990, Autom..

[29]  Peter Young,et al.  Parameter estimation for continuous-time models - A survey , 1979, Autom..

[30]  David H. Owens,et al.  Feed-forward-feedback control of multivariable systems The overall design of a boiler control system , 1976 .

[31]  P. Young Some observations on instrumental variable methods of time-series analysis , 1976 .

[32]  P. Young An instrumental variable method for real-time identification of a noisy process , 1970 .