The high-resolution far-infrared spectrum of methane at the SOLEIL synchrotron

[1]  V. Boudon,et al.  Performance of the AILES THz-Infrared beamline at SOLEIL for High resolution spectroscopy , 2010 .

[2]  A. Suits Titan: a strangely familiar world. , 2009, The journal of physical chemistry. A.

[3]  R. Kuschnig,et al.  WATER, METHANE, AND CARBON DIOXIDE PRESENT IN THE DAYSIDE SPECTRUM OF THE EXOPLANET HD 209458b , 2009, 0908.4010.

[4]  Franck Lefèvre,et al.  Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics , 2009, Nature.

[5]  R. Boyle,et al.  12C/13C ratio in ethane on titan and implications for methane's replenishment. , 2009, The journal of physical chemistry. A.

[6]  G. Villanueva,et al.  Strong release of methane on Mars: Evidence of biology or geology? , 2009 .

[7]  V. Boudon,et al.  Global analysis of the high resolution infrared spectrum of methane 12CH4 in the region from 0 to 4800 cm−1 , 2009 .

[8]  E. Lellouch,et al.  Pluto's lower atmosphere structure and methane abundance from high-resolution spectroscopy and stellar occultations , 2009, 0901.4882.

[9]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[10]  L. Sromovsky,et al.  The methane abundance and structure of Uranus' cloud bands inferred from spatially resolved 2006 Keck grism spectra ☆ , 2008 .

[11]  Richard C. Puetter,et al.  Evidence for methane escape and strong seasonal and dynamical perturbations of Neptune's atmospheric temperatures , 2007 .

[12]  G. Orton,et al.  The composition of Titan's stratosphere from Cassini/CIRS mid-infrared spectra , 2007 .

[13]  Eric Gendron,et al.  The 2‐μm spectroscopy of Huygens probe landing site on Titan with Very Large Telescope/Nasmyth Adaptive Optics System Near‐Infrared Imager and Spectrograph , 2007 .

[14]  Glenn S. Orton,et al.  The distortion dipole rotational spectrum of CH4 : A low temperature far-infrared study , 2007 .

[15]  P. Drossart,et al.  2-μm Spectroscopy of Huygens Probe Landing Site on Titan with VLT/NACO , 2007 .

[16]  C. McKay,et al.  Titan's surface albedo variations over a Titan season from near-infrared CFHT/FTS spectra , 2006 .

[17]  P. Drossart,et al.  Evidence for a Polar Ethane Cloud on Titan , 2006, Science.

[18]  Oleg Chubar,et al.  The AILES Infrared Beamline on the third generation Synchrotron Radiation Facility SOLEIL , 2006 .

[19]  Tony Gabard,et al.  Model, software and database for line-mixing effects in the ν3 and ν4 bands of CH4 and tests using laboratory and planetary measurements—II: H2 (and He) broadening and the atmospheres of Jupiter and Saturn , 2006 .

[20]  Athena Coustenis,et al.  Titan's 3-micron spectral region from ISO high-resolution spectroscopy , 2006 .

[21]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[22]  S. Calcutt,et al.  Methane absorption in the atmosphere of Jupiter from 1800 to 9500 cm−1 and implications for vertical cloud structure , 2005 .

[23]  V. Malathy Devi,et al.  Multispectrum analysis of 12CH4 from 4100 to 4635 cm−1: 1. Self-broadening coefficients (widths and shifts) , 2005 .

[24]  Marco Giuranna,et al.  Detection of Methane in the Atmosphere of Mars , 2004, Science.

[25]  Jean-Paul Champion,et al.  Symmetry-adapted tensorial formalism to model rovibrational and rovibronic spectra of molecules pertaining to various point groups , 2004 .

[26]  A. Coradini,et al.  CASSINI/VIMS-V at Jupiter: Radiometric calibration test and data results , 2004 .

[27]  V. Boudon,et al.  Spectroscopic tools for remote sensing of greenhouse gases CH4, CF4 and SF6 , 2003 .

[28]  V. Boudon,et al.  Wenger Spectroscopic tools for remote sensing of greenhouse gases CH 4 , CF 4 and SF 6 , 2003 .

[29]  T. Encrenaz,et al.  Past and Future Space Observations of Titan in the Infrared and Submm Ranges: ISO, CASSINI and FIRST , 2001 .

[30]  Michel R. Carleer,et al.  WSpectra: a Windows program to accurately measure the line intensities of high-resolution Fourier transform spectra , 2001, SPIE Remote Sensing.

[31]  Mark C. Abrams,et al.  Fourier Transform Spectrometry , 2001 .

[32]  M. Khalil,et al.  NON-CO 2 GREENHOUSE GASES IN THE ATMOSPHERE , 1999 .

[33]  R. J. Wells,et al.  Rapid approximation to the Voigt/Faddeeva function and its derivatives , 1999 .

[34]  Loëte,et al.  Simultaneous Determination of Force Constants and Dipole Moment Derivatives of Methane. , 1998, Journal of molecular spectroscopy.

[35]  John R. Spencer,et al.  A model for the overabundance of methane in the atmospheres of Pluto and Triton , 1996 .

[36]  V. M. Devi,et al.  A multispectrum nonlinear least squares fitting technique , 1995 .

[37]  Jean-Paul Champion,et al.  Spherical Top Spectra , 1992 .

[38]  A. Weber,et al.  Spectroscopy of the Earth's Atmosphere and Interstellar Medium , 1992 .

[39]  G. Magerl,et al.  The vibration-induced dipole moment in the ν2ν4 diad of 13CD4 and 28SiH4 , 1989 .

[40]  J. Champion,et al.  The millimeter-wave spectrum of methane , 1987 .

[41]  A. Bauder,et al.  Pure rotational spectra of methane and methane-d4 in the vibrational ground state observed by microwave Fourier transform spectroscopy , 1985 .

[42]  I. Ozier,et al.  The vibrationally induced rotational spectrum of CH4 in the (v4=1) state , 1978 .

[43]  I. Ozier,et al.  The forbidden (J → J + 1) spectrum of CH4 in the ground vibronic state , 1975 .

[44]  I. Ozier Ground-State Electric Dipole Moment of Methane , 1971 .

[45]  W. Smith,et al.  Rotational spectra induced by vibrations , 1969 .

[46]  N. S. Barnett,et al.  Private communication , 1969 .