On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$

We analyse some peculiar properties of the function of the Mittag-Leffler (M-L) type, $e_\alpha(t) := E_\alpha(-t^\alpha)$ for $0 0$, which is known to be completely monotone (CM) with a non-negative spectrum of frequencies and times, suitable to model fractional relaxation processes. We first note that (surprisingly) these two spectra coincide so providing a universal scaling property of this function, not well pointed out in the literature. Furthermore, we consider the problem of approximating our M-L function with simpler CM functions for small and large times. We provide two different sets of elementary CM functions that are asymptotically equivalent to $e_\alpha(t)$ as $t\to 0$ and $t\to +\infty$. The first set is given by the stretched exponential for small times and the power law for large times, following a standard approach. For the second set we chose two rational CM functions in $t^\alpha$, obtained as the Pad\`e Approximants (PA) $[0/1]$ to the convergent series in positive powers (as $t\to 0$) and to the asymptotic series in negative powers (as $t\to \infty$), respectively. From numerical computations we are allowed to the conjecture that the second set provides upper and lower bounds to the Mittag-Leffler function.

[1]  Harry Pollard,et al.  The completely monotonic character of the Mittag-Leffler function $E_a \left( { - x} \right)$ , 1948 .

[2]  V. Kiryakova,et al.  The Multi-index Mittag-Leffler Functions and Their Applications for Solving Fractional Order Problems in Applied Analysis , 2010 .

[3]  K. Diethelm Mittag-Leffler Functions , 2010 .

[4]  Hari M. Srivastava,et al.  The H-functions of one and two variables, with applications , 1982 .

[5]  A. M. Mathai,et al.  The H-Function: Theory and Applications , 2009 .

[6]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[7]  R. Gorenflo,et al.  Time-fractional derivatives in relaxation processes: a tutorial survey , 2008, 0801.4914.

[8]  Arak M. Mathai,et al.  The H-function with applications in statistics and other disciplines , 1978 .

[9]  Ralf Metzler,et al.  Fractional dynamics : recent advances , 2011 .

[10]  K. Cole,et al.  Dispersion and Absorption in Dielectrics II. Direct Current Characteristics , 1942 .

[11]  Ralf Metzler,et al.  Velocity and displacement correlation functions for fractional generalized Langevin equations , 2012 .

[12]  G. A. Baker Essentials of Padé approximants , 1975 .

[13]  H. M. Srivastava,et al.  Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions , 2010 .

[14]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[15]  K. Miller,et al.  Completely monotonic functions , 2001 .

[16]  E. Hille,et al.  On the Theory of Linear Integral Equations. II , 1930 .

[17]  Sergei V. Rogosin,et al.  Multi-parametric mittag-leffler functions and their extension , 2013 .

[18]  Anatoly A. Kilbas,et al.  On solution of integral equation of Abel-Volterra type , 1995, Differential and Integral Equations.

[19]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[20]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[21]  B. Gross,et al.  On Creep and Relaxation , 1947 .

[22]  Arak M. Mathai,et al.  Special Functions for Applied Scientists , 2008 .

[23]  M. Caputo,et al.  A new dissipation model based on memory mechanism , 1971 .

[24]  F. Mainardi,et al.  Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics , 2011, 1106.1761.

[25]  A. P. Starovoitov,et al.  Padé approximants of the Mittag-Leffler functions , 2007 .

[26]  Giovanni Sansone,et al.  Lectures on the theory of functions of a complex variable , 1961 .

[27]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[28]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[29]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[30]  Francesco Mainardi,et al.  Linear models of dissipation in anelastic solids , 1971 .

[31]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[32]  Arak M. Mathai,et al.  The H-Function , 2010 .

[33]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[34]  Hiroshi Yamauchi,et al.  Lectures on the Theory of Functions of a Complex Variable, Vol. I, Holomorphic Functions. , 1961 .

[35]  René L. Schilling,et al.  Bernstein Functions: Theory and Applications , 2010 .

[36]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[37]  V. E. Tarasov Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .

[38]  Thomas Simon,et al.  Comparing Fréchet and positive stable laws , 2013, 1310.1888.

[39]  O. I. Marichev,et al.  Handbook of Integral Transforms of Higher Transcendental Functions , 1983 .

[40]  A. Kilbas H-Transforms: Theory and Applications , 2004 .

[41]  I. Podlubny Fractional differential equations , 1998 .

[42]  V. Kiryakova,et al.  The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus , 2010, Comput. Math. Appl..

[43]  Luisa Beghin,et al.  Poisson-type processes governed by fractional and higher-order recursive differential equations , 2009, 0910.5855.

[44]  V. Kiryakova Generalized Fractional Calculus and Applications , 1993 .

[45]  Wong,et al.  Exponential Asymptotics of the Mittag—Leffler Function , 2002 .

[46]  V. Uchaikin Fractional Derivatives for Physicists and Engineers , 2013 .