Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature

In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres.

[1]  Romain Quidant,et al.  Nanoscale control of optical heating in complex plasmonic systems. , 2010, ACS nano.

[2]  D. Cojoc,et al.  Optical Micro-Manipulation Using Laguerre-Gaussian Beams , 2005 .

[3]  Garnett W. Bryant,et al.  Metal‐nanoparticle plasmonics , 2008 .

[4]  Alistair Elfick,et al.  Heating effects in tip-enhanced optical microscopy. , 2006, Optics express.

[5]  J. R. Adleman,et al.  Heterogenous catalysis mediated by plasmon heating. , 2009, Nano letters.

[6]  P. Barber Absorption and scattering of light by small particles , 1984 .

[7]  Daniele Chiappe,et al.  Transparent plasmonic nanowire electrodes via self-organised ion beam nanopatterning. , 2013, Small.

[8]  Philippe Guyot-Sionnest,et al.  Synthesis and Optical Characterization of Au/Ag Core/Shell Nanorods , 2004 .

[9]  Francesco De Angelis,et al.  Fully analytical description of adiabatic compression in dissipative polaritonic structures , 2012 .

[10]  W. E. Lawrence,et al.  Intraband optical conductivity sigma/omega,T/ of Cu, Ag, and Au - Contribution from electron-electron scattering , 1981 .

[11]  W. E. Lawrence Electron-electron scattering in the low-temperature resistivity of the noble metals , 1976 .

[12]  N. Rotenberg,et al.  Ultrafast silicon-based active plasmonics at telecom wavelengths. , 2010, Optics express.

[13]  Mingpu Wang,et al.  Size and shape dependent melting temperature of metallic nanoparticles , 2004 .

[14]  G. V. Chester,et al.  Solid State Physics , 2000 .

[15]  K. Temst,et al.  Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy. , 2011, Small.

[16]  Wei Xu,et al.  Surface plasmon polaritons: physics and applications , 2012 .

[17]  R. Olmon,et al.  Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale. , 2012, The journal of physical chemistry letters.

[18]  C. W. Mays,et al.  On surface stress and surface tension: I. Theoretical considerations , 1968 .

[19]  Akamatsu,et al.  TEM Investigation and Electron Diffraction Study on Dispersion of Gold Nanoparticles into a Nylon 11 Thin Film during Heat Treatment. , 1999, Journal of colloid and interface science.

[20]  Federico Capasso,et al.  Effect of radiation damping on the spectral response of plasmonic components. , 2011, Optics express.

[21]  P. Drude Zur Elektronentheorie der Metalle , 1900 .

[22]  Pablo G. Etchegoin,et al.  Erratum: “An analytic model for the optical properties of gold” [J. Chem. Phys. 125, 164705 (2006)] , 2007 .

[23]  Wei Zhang,et al.  Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances , 2006, Nanoscale Research Letters.

[24]  G. Baffou,et al.  Mapping heat origin in plasmonic structures. , 2010, Physical review letters.

[25]  Francisco Sanz-Rodríguez,et al.  Fluorescent nanothermometers provide controlled plasmonic-mediated intracellular hyperthermia. , 2013, Nanomedicine.

[26]  Vladimir P. Zharov,et al.  Photothermal detection of local thermal effects during selective nanophotothermolysis , 2003 .

[27]  Kuo-Ping Chen,et al.  Drude relaxation rate in grained gold nanoantennas. , 2010, Nano letters.

[28]  T. Holstein,et al.  Theory of transport phenomena in an electron-phonon gas , 1964 .

[29]  Marie-Luce Thèye,et al.  Investigation of the Optical Properties of Au by Means of Thin Semitransparent Films , 1970 .

[30]  D. Sarid,et al.  Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling, and Applications , 2010 .

[31]  J. Chon,et al.  White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods. , 2009, Physical chemistry chemical physics : PCCP.

[32]  J. Rayne,et al.  Temperature dependence of the infrared absorptivity of the noble metals , 1976 .

[33]  R. B. Murray,et al.  The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials , 1972 .

[34]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[35]  C. W. Mays,et al.  On surface stress and surface tension: II. Determination of the surface stress of gold , 1968 .

[36]  Hristina Petrova,et al.  Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. , 2006, Physical chemistry chemical physics : PCCP.

[37]  V. Zayets,et al.  Optical Isolator Utilizing Surface Plasmons , 2012, Materials.

[38]  S. Cronin,et al.  Plasmon resonant enhancement of carbon monoxide catalysis. , 2010, Nano letters.

[39]  E. Di Fabrizio,et al.  Reflection-mode TERS on Insulin Amyloid Fibrils with Top-Visual AFM Probes , 2012, Plasmonics.

[40]  Kazuyuki Hirao,et al.  Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system , 1998 .

[41]  F. De Angelis,et al.  Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers. , 2011, Optics express.

[42]  R. Brendel,et al.  An infrared dielectric function model for amorphous solids , 1992 .

[43]  G. Demirel,et al.  Plasmon‐Enhanced Photocatalysis on Anisotropic Gold Nanorod Arrays , 2013 .

[44]  Andrea Toma,et al.  Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures , 2011 .

[45]  G. Wiederrecht,et al.  Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. , 2011, Nature nanotechnology.

[46]  Alessandro Alabastri,et al.  Plasmon based biosensor for distinguishing different peptides mutation states , 2013, Scientific Reports.

[47]  Ivan Celanovic,et al.  Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems. , 2012, Optics express.

[48]  Vasily V. Temnov,et al.  Ultrafast acousto-magneto-plasmonics , 2012, Nature Photonics.

[49]  T. Holstein,et al.  Optical and Infrared Volume Absorptivity of Metals , 1954 .

[50]  Qihuang Gong,et al.  Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range , 2013, Scientific Reports.

[51]  Marco Lazzarino,et al.  Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. , 2010, Nature Nanotechnology.

[52]  D. Gramotnev,et al.  Heating effects in nanofocusing metal wedges , 2011 .

[53]  G. Zou,et al.  Highly localized heat generation by femtosecond laser induced plasmon excitation in Ag nanowires , 2013 .

[54]  B. Luk’yanchuk,et al.  Paradoxes in laser heating of plasmonic nanoparticles , 2012 .

[55]  E. Lukianova-Hleb,et al.  Transient Enhancement and Spectral Narrowing of The Photothermal Effect of Plasmonic Nanoparticles Under Pulsed Excitation , 2013, Advanced materials.

[56]  F. Huisken,et al.  Lattice contraction in nanosized silicon particles produced by laser pyrolysis of silane , 1999 .

[57]  Validity of the V parameter for photonic quasi-crystal fibers. , 2010, Optics letters.

[58]  John T. Neu,et al.  Refractive index of several glasses as a function of wavelength and temperature. , 1969 .

[59]  Min Qiu,et al.  Nanosecond photothermal effects in plasmonic nanostructures. , 2012, ACS nano.

[60]  M. Scully,et al.  Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point. , 2011, Optics express.

[61]  N. Engheta,et al.  Emission Enhancement in a Plasmonic Waveguide at Cut-Off , 2011, Materials.

[62]  R. Zaccaria,et al.  Manipulation of light transmission through sub-wavelength hole array , 2007 .

[63]  R. W. Christy,et al.  Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au , 1977 .

[64]  G. Sotiriou Biomedical applications of multifunctional plasmonic nanoparticles. , 2013, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[65]  Christoph Langhammer,et al.  Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms. , 2011, ACS nano.

[66]  Geniece L. Hallett-Tapley,et al.  Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions. , 2013, Chemical communications.

[67]  Stylianos Tzortzakis,et al.  Nonequilibrium electron dynamics in noble metals , 2000 .

[68]  Thomas Härtling,et al.  Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime. , 2012, ACS nano.

[69]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[70]  M. A. Biondi,et al.  Band Structure of Noble Metal Alloys: Optical Absorption inα-Brasses at 4.2°K , 1959 .

[71]  George C. Schatz,et al.  Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach , 2003 .

[72]  R. French,et al.  Critical point analysis of the interband transition strength of electrons , 1996 .

[73]  Feldmann,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002, Physical review letters.

[74]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[75]  Qiang Li,et al.  A plasmon ruler based on nanoscale photothermal effect. , 2013, Optics express.

[76]  Alexander O. Govorov,et al.  Generating heat with metal nanoparticles , 2007 .

[77]  M El Sayed,et al.  SHAPE AND SIZE DEPENDENCE OF RADIATIVE, NON-RADIATIVE AND PHOTOTHERMAL PROPERTIES OF GOLD NANOCRYSTALS , 2000 .

[78]  Paul S Weiss,et al.  Molecular plasmonics for biology and nanomedicine. , 2012, Nanomedicine.

[79]  Ward Brullot,et al.  Magnetic-plasmonic nanoparticles for the life sciences: calculated optical properties of hybrid structures. , 2012, Nanomedicine : nanotechnology, biology, and medicine.

[80]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[81]  P. Guyot-Sionnest,et al.  Reduced damping of surface plasmons at low temperatures , 2009 .

[82]  H. Atwater,et al.  Photonic design principles for ultrahigh-efficiency photovoltaics. , 2012, Nature materials.

[83]  N. Grigorchuk Radiative damping of surface plasmon resonance in spheroidal metallic nanoparticle embedded in a dielectric medium , 2012, 1210.5647.

[84]  Sang‐Hyun Oh,et al.  Engineering metallic nanostructures for plasmonics and nanophotonics , 2012, Reports on progress in physics. Physical Society.

[85]  Wayne Dickson,et al.  Low-temperature plasmonics of metallic nanostructures. , 2012, Nano letters.

[86]  S. Hasegawa,et al.  Heat‐Induced Size Evolution of Gold Nanoparticles in the Solid State , 2001 .

[87]  R. Zaccaria,et al.  Interplay between electric and magnetic effect in adiabatic polaritonic systems. , 2013, Optics express.

[88]  R. Morandotti,et al.  Extremely large extinction efficiency and field enhancement in terahertz resonant dipole nanoantennas. , 2011, Optics express.

[89]  Romain Quidant,et al.  Heat generation in plasmonic nanostructures: Influence of morphology , 2009 .

[90]  Romain Quidant,et al.  Plasmon-assisted optofluidics. , 2011, ACS nano.

[91]  Francesco De Angelis,et al.  Surface plasmon polariton compression through radially and linearly polarized source. , 2012, Optics letters.

[92]  R. Proietti Zaccaria,et al.  Single-mode operation regime for 12-fold index-guiding quasicrystal optical fibers , 2010 .

[93]  E Di Fabrizio,et al.  Hot-electron nanoscopy using adiabatic compression of surface plasmons. , 2013, Nature nanotechnology.

[94]  E. Fabrizio,et al.  Cross beam lithography (FIB+EBL) and dip pen nanolithography for nanoparticle conductivity measurements , 2005 .

[95]  J. Santamaría,et al.  Enhancing of plasmonic photothermal therapy through heat-inducible transgene activity. , 2013, Nanomedicine : nanotechnology, biology, and medicine.

[96]  Zoran Jakšić,et al.  Negative Refractive Index Metasurfaces for Enhanced Biosensing , 2010, Materials.

[97]  N. Zheludev,et al.  Low-loss terahertz superconducting plasmonics , 2012 .

[98]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Yi Cui,et al.  Self-limited plasmonic welding of silver nanowire junctions. , 2012, Nature materials.

[100]  Stéphane Berciaud,et al.  Observation of intrinsic size effects in the optical response of individual gold nanoparticles. , 2005, Nano letters.

[101]  P. Etchegoin,et al.  An analytic model for the optical properties of gold. , 2006, The Journal of chemical physics.

[102]  A. Govorov,et al.  Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. , 2009, Nano letters.

[103]  R Rodríguez-Oliveros,et al.  Gold nanostars as thermoplasmonic nanoparticles for optical heating. , 2012, Optics express.

[104]  I. Nefedov,et al.  Plasmonic Coaxial Waveguides with Complex Shapes of Cross-Sections , 2010, Materials.

[105]  U. Kreibig,et al.  Dielectric function and plasma resonances of small metal particles , 1975 .

[106]  O. A. Yeshchenko,et al.  Temperature dependence of the surface plasmon resonance in gold nanoparticles , 2013, 1303.3778.

[107]  W. Cai,et al.  Importance of lattice contraction in surface plasmon resonance shift for free and embedded silver particles , 2001 .

[108]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[109]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[110]  W. E. Lawrence,et al.  Electron-Electron Scattering in the Transport Coefficients of Simple Metals , 1973 .

[111]  Weihua Zhang,et al.  Near-Field Heating, Annealing, and Signal Loss in Tip-Enhanced Raman Spectroscopy , 2008 .

[112]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .