Statistical mechanical prediction of ligand perturbation to RNA secondary structure and application to riboswitches

The realization that noncoding RNA is implicated in numerous cellular processes, makes it imperative to understand and predict RNA‐folding. RNA secondary structure prediction is more tractable than tertiary structure or protein structure. Yet insights into RNA structure–function relationships are complicated by coupling between RNA‐folding and ligand‐binding. Here, perturbations to equilibrium secondary structure conformational distributions for two riboswitches are calculated in the presence of bound cognate ligands. This work incorporates a key factor coupling ligand binding to RNA conformation but not considered in most previous calculations: the differential affinity of the ligand for a range of RNA‐folding intermediates. Significant shifts in the free energy landscape (FEL) due to the ligand occur for transcripts of lengths corresponding to the “decision window,” following transcription of the so‐called anti‐terminator helix. The results suggest how ligand perturbation can stabilize the formation of an intermediate conformation, readily facilitating terminator hairpin formation in the full‐length riboswitch.

[1]  Tao Pan,et al.  Folding of noncoding RNAs during transcription facilitated by pausing-induced nonnative structures , 2007, Proceedings of the National Academy of Sciences.

[2]  Shantenu Jha,et al.  The Impact of a Ligand Binding on Strand Migration in the SAM-I Riboswitch , 2013, PLoS Comput. Biol..

[3]  Shi-jie Chen,et al.  Predicting Cotranscriptional Folding Kinetics For Riboswitch. , 2018, The journal of physical chemistry. B.

[4]  Fareed Aboul-Ela,et al.  Basis for ligand discrimination between ON and OFF state riboswitch conformations: the case of the SAM-I riboswitch. , 2012, RNA.

[5]  R. Breaker,et al.  Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. , 2008, Molecular cell.

[6]  Ivo L Hofacker,et al.  Energy-directed RNA structure prediction. , 2014, Methods in molecular biology.

[7]  D. Turner,et al.  A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation , 2006, Nucleic acids research.

[8]  A. Laederach,et al.  Transcending the prediction paradigm: novel applications of SHAPE to RNA function and evolution , 2016, Wiley interdisciplinary reviews. RNA.

[9]  Siqi Tian,et al.  RNA structure through multidimensional chemical mapping , 2016, bioRxiv.

[10]  C. Yanofsky,et al.  Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[11]  Christoph Flamm,et al.  In silico design of ligand triggered RNA switches , 2018, bioRxiv.

[12]  Katarzyna J Purzycka,et al.  RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme. , 2017, RNA.

[13]  T. Henkin,et al.  Riboswitch RNAs: Regulation of gene expression by direct monitoring of a physiological signal , 2010, RNA biology.

[14]  J. Onuchic,et al.  Magnesium controls aptamer-expression platform switching in the SAM-I riboswitch , 2019, Nucleic acids research.

[15]  Ali Nahvi,et al.  An mRNA structure that controls gene expression by binding S-adenosylmethionine , 2003, Nature Structural Biology.

[16]  T. Henkin,et al.  Crystal structures of the SAM-III/SMK riboswitch reveal the SAM-dependent translation inhibition mechanism , 2008, Nature Structural &Molecular Biology.

[17]  Peter Daldrop,et al.  RNA Tertiary Interactions in a Riboswitch Stabilize the Structure of a Kink Turn , 2011, Structure.

[18]  Feng Ding,et al.  RNA-Puzzles: a CASP-like evaluation of RNA three-dimensional structure prediction. , 2012, RNA.

[19]  Jonathan Perreault,et al.  Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation , 2017, Nature Communications.

[20]  D. Crothers,et al.  The kinetics of ligand binding by an adenine-sensing riboswitch. , 2005, Biochemistry.

[21]  J. Steitz,et al.  The Noncoding RNA Revolution—Trashing Old Rules to Forge New Ones , 2014, Cell.

[22]  S. Strobel,et al.  Gene regulation by a glycine riboswitch singlet uses a finely tuned energetic landscape for helical switching , 2018, RNA.

[23]  Daniel Herschlag,et al.  The roles of structural dynamics in the cellular functions of RNAs , 2019, Nature Reviews Molecular Cell Biology.

[24]  G. Nienhaus,et al.  Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch. , 2017, Nature chemical biology.

[25]  Wei Huang,et al.  Linking aptamer‐ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design , 2015, Wiley interdisciplinary reviews. RNA.

[26]  D. Nesbitt,et al.  Single-Molecule FRET Kinetics of the Mn2+ Riboswitch: Evidence for Allosteric Mg2+ Control of "Induced-Fit" vs "Conformational Selection" Folding Pathways. , 2019, The journal of physical chemistry. B.

[27]  Ronny Lorenz,et al.  The Vienna RNA Websuite , 2008, Nucleic Acids Res..

[28]  G. Nienhaus,et al.  The multi-state energy landscape of the SAM-I riboswitch: A single-molecule Förster resonance energy transfer spectroscopy study. , 2018, The Journal of chemical physics.

[29]  M. Woodside,et al.  Transition path times for nucleic Acid folding determined from energy-landscape analysis of single-molecule trajectories. , 2012, Physical review letters.

[30]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[31]  Vitaly Epshtein,et al.  The riboswitch-mediated control of sulfur metabolism in bacteria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Tina M. Henkin,et al.  Natural Variability in S-Adenosylmethionine (SAM)-Dependent Riboswitches: S-Box Elements in Bacillus subtilis Exhibit Differential Sensitivity to SAM In Vivo and In Vitro , 2007, Journal of bacteriology.

[33]  R. Breaker,et al.  The structural and functional diversity of metabolite-binding riboswitches. , 2009, Annual review of biochemistry.

[34]  T. Henkin,et al.  S-adenosylmethionine directly inhibits binding of 30S ribosomal subunits to the SMK box translational riboswitch RNA , 2007, Proceedings of the National Academy of Sciences.

[35]  C. Brooks,et al.  Ligand Modulates Cross-Coupling between Riboswitch Folding and Transcriptional Pausing , 2018, bioRxiv.

[36]  Michael T. Wolfinger,et al.  NMR Structural Profiling of Transcriptional Intermediates Reveals Riboswitch Regulation by Metastable RNA Conformations. , 2017, Journal of the American Chemical Society.

[37]  Karissa Y. Sanbonmatsu,et al.  The expression platform and the aptamer: cooperativity between Mg2+ and ligand in the SAM-I riboswitch , 2012, Nucleic acids research.

[38]  David H Mathews,et al.  Prediction of RNA secondary structure by free energy minimization. , 2006, Current opinion in structural biology.

[39]  D. Thirumalai,et al.  Relative stability of helices determines the folding landscape of adenine riboswitch aptamers. , 2008, Journal of the American Chemical Society.

[40]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[41]  D. Turner,et al.  Predicting oligonucleotide affinity to nucleic acid targets. , 1999, RNA.

[42]  Michael F. Sloma,et al.  Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures , 2016, RNA.

[43]  Robert Giegerich,et al.  Lost in folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction , 2011, BMC Bioinformatics.

[44]  Peter F. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology.

[45]  D. Lafontaine,et al.  Folding of the SAM aptamer is determined by the formation of a K-turn-dependent pseudoknot. , 2008, Biochemistry.

[46]  Tamar Schlick,et al.  Dynamic Energy Landscapes of Riboswitches Help Interpret Conformational Rearrangements and Function , 2012, PLoS Comput. Biol..

[47]  R. Parker,et al.  A multicolor riboswitch-based platform for imaging of RNA in live mammalian cells , 2018, Nature Chemical Biology.

[48]  J. Onuchic,et al.  Cooperation between Magnesium and Metabolite Controls Collapse of the SAM-I Riboswitch. , 2017, Biophysical journal.

[49]  D. Turner,et al.  2 – Thermodynamics of RNA Secondary Structure Formation , 2001 .

[50]  T. Henkin,et al.  The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram‐positive bacteria , 1998, Molecular microbiology.

[51]  D. Lafontaine,et al.  Molecular insights into the ligand-controlled organization of the SAM-I riboswitch. , 2011, Nature chemical biology.

[52]  P. Stadler,et al.  The effect of RNA secondary structures on RNA-ligand binding and the modifier RNA mechanism: a quantitative model. , 2005, Gene.

[53]  R. M. Harris,et al.  Physical chemistry for the life sciences , 1980, Nature.

[54]  T. Pan,et al.  Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch , 2012, Proceedings of the National Academy of Sciences.

[55]  É. Massé,et al.  Comparative Study between Transcriptionally- and Translationally-Acting Adenine Riboswitches Reveals Key Differences in Riboswitch Regulatory Mechanisms , 2011, PLoS genetics.

[56]  Harald Schwalbe,et al.  Three-state mechanism couples ligand and temperature sensing in riboswitches , 2013, Nature.

[57]  A. Serganov,et al.  A Decade of Riboswitches , 2013, Cell.

[58]  D. Lafontaine,et al.  Ligand recognition and helical stacking formation are intimately linked in the SAM-I riboswitch regulatory mechanism , 2017, RNA.

[59]  Jan Gorodkin,et al.  RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods , 2014, Methods in Molecular Biology.

[60]  D. Crothers,et al.  The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. , 2005, Molecular cell.

[61]  D Thirumalai,et al.  Gene regulation by riboswitches with and without negative feedback loop. , 2012, Biophysical journal.

[62]  Walter N. Moss,et al.  Folding and finding RNA secondary structure. , 2010, Cold Spring Harbor perspectives in biology.

[63]  E. Nudler,et al.  The riboswitch control of bacterial metabolism. , 2004, Trends in biochemical sciences.

[64]  Yanli Wang,et al.  Co-Transcriptional Folding and Regulation Mechanisms of Riboswitches , 2017, Molecules.

[65]  T. Henkin,et al.  The SMK box is a new SAM-binding RNA for translational regulation of SAM synthetase , 2006, Nature Structural &Molecular Biology.

[66]  Tina M Henkin,et al.  Variable sequences outside the SAM-binding core critically influence the conformational dynamics of the SAM-III/SMK box riboswitch. , 2011, Journal of molecular biology.

[67]  R. Montange,et al.  Structure of the S-adenosylmethionine riboswitch regulatory mRNA element , 2006, Nature.

[68]  S. Jha,et al.  Conformational heterogeneity of the SAM-I riboswitch transcriptional ON state: a chaperone-like role for S-adenosyl methionine. , 2012, Journal of molecular biology.

[69]  H. Schwalbe,et al.  Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy , 2017, Nucleic acids research.

[70]  Alexander Schug,et al.  Nonlocal helix formation is key to understanding S-adenosylmethionine-1 riboswitch function. , 2009, Biophysical journal.