ARRBFNs with SVR for prediction of chaotic time series with outliers

In this article, annealing robust radial basis function networks (ARRBFNs), which consist of a radial basis function network and a support vector regression (SVR), and an annealing robust learning algorithm (ARLA) are proposed for the prediction of chaotic time series with outliers. In order to overcome the initial structural problems of the proposed neural networks, the SVR is utilized to determine the number of hidden nodes, the initial parameters of the kernel, and the initial weights for the proposed ARRBFNs. Then the ARLA that can conquer the outliers is applied to tune the parameters of the kernel and the weights in the proposed ARRBFNs under the initial structure with SVR. The simulation results of Mackey-Glass time series show that the proposed approach with different SVRs can cope with outliers and give a fast learning speed. The results of the simulation are also given to demonstrate the validity of proposed method for chaotic time series with outliers.