Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation

A solution to the more than 300-years old problem of geometric and physical interpretation of fractional integration and dieren tiation (i.e., integration and dieren tiation of an arbitrary real order) is suggested for the Riemann-Liouville fractional integration and dieren tiation, the Caputo fractional dieren tiation, the Riesz potential, and the Feller potential. It is also generalized for giving a new geometric and physical interpretation of more general convolution integrals of the Volterra type. Besides this, a new physical interpretation is suggested for the Stieltjes integral.

[1]  Rochelle Young,et al.  Adventures in wonderland , 2001, Nature Biotechnology.

[2]  I. Segal Einstein ’ s Static Universe : An Idea Whose Time Has Come Back ? , 2000 .

[3]  J. K. Hammond,et al.  Physical and geometrical in-terpretation of fractional operators , 1998 .

[4]  Faycal Ben Adda Interprétation géométrique de la différentiabilité et du gradient d'ordre réel , 1998 .

[5]  Zu-Guo Yu,et al.  Fractional integral associated to generalized cookie-cutter set and its physical interpretation , 1997 .

[6]  Zu-Guo Yu,et al.  FRACTIONAL INTEGRAL ASSOCIATED TO THE SELF-SIMILAR SET OR THE GENERALIZED SELF-SIMILAR SET AND ITS PHYSICAL INTERPRETATION , 1996 .

[7]  R. Rutman,et al.  On physical interpretations of fractional integration and differentiation , 1995 .

[8]  Roman S. Rutman,et al.  On the paper by R. R. Nigmatullin “fractional integral and its physical interpretation” , 1994 .

[9]  Raoul R. Nigmatullin,et al.  Fractional integral and its physical interpretation , 1992 .

[10]  G. L. Bullock A geometric interpretation of the Riemann-Stieltjes integral , 1988 .

[11]  Irving Segal,et al.  Mathematical cosmology and extragalactic astronomy , 1976 .

[12]  B. Ross,et al.  Fractional Calculus and Its Applications , 1975 .

[13]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[14]  J. Moss THE NATURAL PHILOSOPHY OF TIME , 1962 .

[15]  W. Fabian LX. Fractional calculus , 1935 .

[16]  E. W. Brown Time and Its Measurement , 1932, Transactions of the American Institute of Electrical Engineers.

[17]  L. Carroll,et al.  Alice's Adventures in Wonderland , 2019 .