Polarimetric Properties of Event Horizon Telescope Targets from ALMA

We present the results from a full polarization study carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) during the first Very Long Baseline Interferometry (VLBI) campaign, which was conducted in 2017 April in the λ3 mm and λ1.3 mm bands, in concert with the Global mm-VLBI Array (GMVA) and the Event Horizon Telescope (EHT), respectively. We determine the polarization and Faraday properties of all VLBI targets, including Sgr A*, M87, and a dozen radio-loud active galactic nuclei (AGNs), in the two bands at several epochs in a time window of 10 days. We detect high linear polarization fractions (2%–15%) and large rotation measures (RM > 103.3–105.5 rad m−2), confirming the trends of previous AGN studies at millimeter wavelengths. We find that blazars are more strongly polarized than other AGNs in the sample, while exhibiting (on average) order-of-magnitude lower RM values, consistent with the AGN viewing angle unification scheme. For Sgr A* we report a mean RM of (−4.2 ± 0.3) × 105 rad m−2 at 1.3 mm, consistent with measurements over the past decade and, for the first time, an RM of (–2.1 ± 0.1) × 105 rad m−2 at 3 mm, suggesting that about half of the Faraday rotation at 1.3 mm may occur between the 3 mm photosphere and the 1.3 mm source. We also report the first unambiguous measurement of RM toward the M87 nucleus at millimeter wavelengths, which undergoes significant changes in magnitude and sign reversals on a one year timescale, spanning the range from −1.2 to 0.3 × 105 rad m−2 at 3 mm and −4.1 to 1.5 × 105 rad m−2 at 1.3 mm. Given this time variability, we argue that, unlike the case of Sgr A*, the RM in M87 does not provide an accurate estimate of the mass accretion rate onto the black hole. We put forward a two-component model, comprised of a variable compact region and a static extended region, that can simultaneously explain the polarimetric properties observed by both the EHT (on horizon scales) and ALMA (which observes the combined emission from both components). These measurements provide critical constraints for the calibration, analysis, and interpretation of simultaneously obtained VLBI data with the EHT and GMVA.

Daniel C. M. Palumbo | Chih-Wei L. Huang | Alexander W. Raymond | W. Freeman | H. Falcke | T. Lauer | K. Bouman | G. Desvignes | B. Benson | J. Carlstrom | D. James | A. Gopakumar | P. Koch | L. Rezzolla | C. Kramer | K. Menten | R. Neri | P. Ho | L. Blackburn | J. Cordes | E. Ros | J. Algaba | Sang-Sung Lee | M. Kino | S. Trippe | Jongho Park | Guangyao Zhao | D. Byun | M. Gurwell | Jae-Young Kim | P. Galison | M. Hecht | C. Gammie | N. Patel | M. Inoue | Aviad Levis | F. Schloerb | E. Fomalont | Jongsoo Kim | R. Narayan | Michael D. Johnson | S. Doeleman | J. Wardle | S. Chatterjee | L. Loinard | F. Roelofs | D. Psaltis | J. Weintroub | A. Rogers | R. Plambeck | R. Tilanus | P. Friberg | J. Moran | K. Young | M. Titus | D. Marrone | G. Bower | T. Krichbaum | A. Roy | V. Fish | K. Akiyama | A. Lobanov | A. Broderick | R. Blundell | M. Honma | T. Oyama | J. SooHoo | F. Tazaki | J. Dexter | A. Chael | K. Asada | C. Brinkerink | G. Crew | R. Gold | J. Zensus | D. Haggard | M. Perucho | R. Karuppusamy | Kuo Liu | P. Torne | I. Martí-Vidal | N. Nagar | D. Hughes | Ming-Tang Chen | R. Hesper | K. Toma | M. Sasada | D. Pesce | P. Tiede | H. Pu | Dong-Jin Kim | A. Marscher | S. Jorstad | U. Pen | P. Chesler | J. Mao | I. Bemmel | M. Kadler | T. Crawford | D. Bintley | D. Ward-Thompson | D. Muders | B. Jannuzi | A. Young | K. Chatterjee | I. Natarajan | A. Alberdi | W. Alef | R. Azulay | A. Baczko | D. Ball | M. Baloković | J. Barrett | W. Boland | M. Bremer | R. Brissenden | S. Britzen | T. Bronzwaer | Chi-kwan Chan | Yongjun Chen | I. Cho | P. Christian | Yuzhu Cui | J. Davelaar | R. Deane | J. Dempsey | R. Eatough | R. Fraga-Encinas | C. Fromm | O. Gentaz | B. Georgiev | C. Goddi | M. Gu | K. Hada | Lei Huang | S. Issaoun | M. Janssen | B. Jeter | Wu Jiang | T. Jung | M. Karami | T. Kawashima | G. Keating | M. Kettenis | Junhan Kim | J. Koay | S. Koyama | C. Kuo | Yan-Rong Li | Zhiyuan Li | M. Lindqvist | E. Liuzzo | W. Lo | C. Lonsdale | N. MacDonald | S. Markoff | S. Matsushita | L. Matthews | L. Medeiros | Y. Mizuno | I. Mizuno | K. Moriyama | M. Mościbrodzka | C. Müller | H. Nagai | G. Narayanan | C. Ni | A. Noutsos | H. Okino | H. Olivares | D. Palumbo | V. Piétu | A. PopStefanija | O. Porth | B. Prather | J. A. Preciado-López | V. Ramakrishnan | M. Rawlings | B. Ripperda | M. Rose | A. Roshanineshat | H. Rottmann | C. Ruszczyk | K. Rygl | S. Sánchez | D. Sánchez-Arguelles | T. Savolainen | K. Schuster | D. Small | B. Sohn | T. Trent | J. Wagner | N. Wex | R. Wharton | M. Wielgus | G. Wong | Z. Younsi | Ye-Fei Yuan | Shan-Shan Zhao | J. Farah | A. Gómez-Ruiz | A. Hernández-Gómez | R. Herrero-Illana | C. Impellizzeri | H. Messias | J. Neilsen | M. Nowak | M. Valtonen | H. Ford | A. Cruz-Osorio | H. V. van Langevelde | J. Conway | M. De Laurentis | F. Özel | R. Rao | Zhiqiang Shen | D. V. van Rossum | Y. Kovalev | A. Ingram | A. Jiménez-Rosales | D. Yoon | N. Marchili | H. Boyce | R. Lico | A. Nathanail | A. Tetarenko | Angelo Ricarte | G. Musoke | G. Bruni | Richard Anantua | A. Fuentes | E. Traianou | Jun Liu | He Sun | Greg Lindahl | D. Broguiere | Wu 悟 Jiang 江 | Yutaro Kofuji | J. Liu 刘 | F. M. Pötzl | J. Gómez | M. Nakamura | G. Ortiz-Léon | Lijing Shao | H. Sun 孙 | F. Yuan 袁 | Zhiqiang 强 Shen 沈志 | F. Rösch | L. Ho | Yongjun 军 Chen 陈永 | R. García | Minfeng 峰 Gu 顾敏 | Luis C. 山 Ho 何子 | M. Kramer | Yan-Rong 荣 Li 李彦 | Zhiyuan 远 Li 李志 | Ru-Sen 森 Lu 路如 | Jirong 荣 Mao 毛基 | A. Raymond | Qingwen 文 Wu 吴庆 | Ye-Fei 飞 Yuan 袁业 | L. Huang 黄 | A. Mejías | S. Komossa | Ruohan Lu | Feng Yuan | Qingwen Wu | David Ball | Aleksandar PopStefanija | Olivier Gentaz | Britton Jeter | C. Kuo | Wen-Ping Lo | Kotaro Moriyama | Jorge A. Preciado-López | Hung-Yi Pu | Ramprasad Rao | Arash Roshanineshat | Daniel R. van Rossum | Doosoo Yoon | D. Hughes | Des Small | A. Levis | R. Anantua | Y. Kofuji | G. Lindahl | J. Davelaar

[1]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon , 2021, The Astrophysical Journal Letters.

[2]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VII. Polarization of the Ring , 2021, The Astrophysical Journal Letters.

[3]  C. Gammie,et al.  Decomposing the internal faraday rotation of black hole accretion flows , 2020, 2009.02369.

[4]  Daniel C. M. Palumbo,et al.  Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution , 2020 .

[5]  A. Gopakumar,et al.  The 2020 April–June super-outburst of OJ 287 and its long-term multiwavelength light curve with Swift: binary supermassive black hole and jet activity , 2020, Monthly Notices of the Royal Astronomical Society: Letters.

[6]  C. Brogan,et al.  Characterizing the Accuracy of ALMA Linear-polarization Mosaics , 2020, Publications of the Astronomical Society of the Pacific.

[7]  K. Hada,et al.  Linear polarization in the nucleus of M87 at 7 mm and 1.3 cm , 2020, Astronomy & Astrophysics.

[8]  S. Kameno,et al.  A Massive Molecular Torus inside a Gas-poor Circumnuclear Disk in the Radio Galaxy NGC 1052 Discovered with ALMA , 2020, The Astrophysical Journal.

[9]  L. Rezzolla,et al.  Plasmoid formation in global GRMHD simulations and AGN flares , 2020, 2002.01777.

[10]  Astronomy,et al.  Striped Blandford/Znajek jets from advection of small-scale magnetic field , 2020, 2001.03171.

[11]  H. Falcke,et al.  First M87 Event Horizon Telescope Results and the Role of ALMA , 2019, 1910.10193.

[12]  J. Davelaar,et al.  Modeling non-thermal emission from the jet-launching region of M 87 with adaptive mesh refinement , 2019, Astronomy & Astrophysics.

[13]  Chih-Wei L. Huang,et al.  First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole , 2019, The Astrophysical Journal.

[14]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[15]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring , 2019, The Astrophysical Journal.

[16]  Kevin A. Dudevoir,et al.  First M87 Event Horizon Telescope Results. II. Array and Instrumentation , 2019, 1906.11239.

[17]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole , 2019, The Astrophysical Journal.

[18]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. III. Data Processing and Calibration , 2019, The Astrophysical Journal.

[19]  L. Rezzolla,et al.  Using evolutionary algorithms to model relativistic jets , 2019, Astronomy & Astrophysics.

[20]  J. A. Fern'andez-Ontiveros,et al.  A compact jet at the infrared heart of the prototypical low-luminosity AGN in NGC 1052 , 2019, Monthly Notices of the Royal Astronomical Society.

[21]  M. Mościbrodzka Linear and circular polarization of a 1D relativistic jet model , 2019, Astronomy & Astrophysics.

[22]  L. Blackburn,et al.  Calibration of ALMA as a Phased Array. ALMA Observations During the 2017 VLBI Campaign , 2019, Publications of the Astronomical Society of the Pacific.

[23]  H. Falcke,et al.  The Size, Shape, and Scattering of Sagittarius A* at 86 GHz: First VLBI with ALMA , 2019, The Astrophysical Journal.

[24]  M. Kino,et al.  Faraday Rotation in the Jet of M87 inside the Bondi Radius: Indication of Winds from Hot Accretion Flows Confining the Relativistic Jet , 2018, The Astrophysical Journal.

[25]  R. Blandford,et al.  Relativistic Jets in Active Galactic Nuclei , 2018, 1812.06025.

[26]  H. Falcke,et al.  ALMA Polarimetry of Sgr A*: Probing the Accretion Flow from the Event Horizon to the Bondi Radius , 2018, The Astrophysical Journal.

[27]  R. Chary,et al.  The Highly Polarized Dusty Emission Core of Cygnus A , 2018, The Astrophysical Journal.

[28]  M. Lister,et al.  MOJAVE XVI: Multiepoch Linear Polarization Properties of Parsec-scale AGN Jet Cores , 2018, The Astrophysical Journal.

[29]  Alan E. E. Rogers,et al.  Detection of Intrinsic Source Structure at ∼3 Schwarzschild Radii with Millimeter-VLBI Observations of SAGITTARIUS A* , 2018, 1805.09223.

[30]  E. Ros,et al.  The limb-brightened jet of M87 down to the 7 Schwarzschild radii scale , 2018, Astronomy & Astrophysics.

[31]  A. Tchekhovskoy,et al.  Magnetic field at a jet base: extreme Faraday rotation in 3C 273 revealed by ALMA , 2018, Astronomy & Astrophysics.

[32]  E. Lopez-Rodriguez,et al.  High resolution imaging of the magnetic field in the central parsec of the Galaxy , 2018, Planetary and Space Science.

[33]  William Junor,et al.  The Structure and Dynamics of the Subparsec Jet in M87 Based on 50 VLBA Observations over 17 Years at 43 GHz , 2018, 1802.06166.

[34]  A. Basu,et al.  Broadband radio spectro-polarimetric observations of high Faraday rotation measure AGN , 2018, 1801.09731.

[35]  P. P. van der Werf,et al.  ALMA Observations of the Physical and Chemical Conditions in Centaurus A , 2017, 1712.00360.

[36]  A. Gopakumar,et al.  Polarization and spectral energy distribution in OJ 287 during the 2016/17 outbursts , 2017 .

[37]  W. Alef,et al.  The ALMA Phasing System: A Beamforming Capability for Ultra-high-resolution Science at (Sub)Millimeter Wavelengths , 2017, 1711.06770.

[38]  D. Gabuzda,et al.  Parsec scale Faraday-rotation structure across the jets of nine active galactic nuclei , 2017, 1709.09062.

[39]  C. Casadio,et al.  POLAMI: Polarimetric Monitoring of Active Galactic Nuclei at Millimetre Wavelengths - III. Characterization of total flux density and polarization variability of relativistic jets , 2017, 1709.08744.

[40]  C. Casadio,et al.  POLAMI: Polarimetric Monitoring of Active Galactic Nuclei at Millimetre Wavelengths - II. Widespread circular polarization , 2017, 1709.08743.

[41]  M. Kino,et al.  Enhanced Polarized Emission from the One-parsec-scale Hotspot of 3C 84 as a Result of the Interaction with the Clumpy Ambient Medium , 2017, 1709.06708.

[42]  R. Plambeck,et al.  What Is the Hidden Depolarization Mechanism in Low-luminosity AGNs? , 2017, 1707.00066.

[43]  J. Ott,et al.  Disentangling the Circumnuclear Environs of Centaurus A. III. An Inner Molecular Ring, Nuclear Shocks, and the CO to Warm H2 Interface , 2017, 1706.05762.

[44]  L. Rezzolla,et al.  Jet-torus connection in radio galaxies: Relativistic hydrodynamics and synthetic emission , 2017, 1705.01300.

[45]  R. Lico,et al.  Interpreting the time variable RM observed in the core region of the TeV blazar Mrk 421 , 2017, 1704.06133.

[46]  H. Falcke,et al.  Faraday rotation in GRMHD simulations of the jet launching zone of M87 , 2017, 1703.02390.

[47]  K. Sokolovsky,et al.  Parsec-scale Faraday rotation and polarization of 20 active galactic nuclei jets , 2017, 1701.00271.

[48]  R. Perley,et al.  High-fidelity VLA imaging of the radio structure of 3C 273 , 2016, 1609.03963.

[49]  R. Lu,et al.  AN ACCRETION-JET MODEL FOR M87: INTERPRETING THE SPECTRAL ENERGY DISTRIBUTION AND FARADAY ROTATION MEASURE , 2016, 1607.08054.

[50]  T. Bronzwaer,et al.  BlackHoleCam: Fundamental physics of the galactic center , 2016, 1606.08879.

[51]  E. Ros,et al.  A highly magnetized twin-jet base pinpoints a supermassive black hole , 2016, 1605.07100.

[52]  R. Paladino,et al.  ALMA SCIENCE VERIFICATION DATA: MILLIMETER CONTINUUM POLARIMETRY OF THE BRIGHT RADIO QUASAR 3C 286 , 2016, 1605.00051.

[53]  J. Algaba,et al.  RESOLVING THE ROTATION MEASURE OF THE M87 JET ON KILOPARSEC SCALES , 2016, 1603.08437.

[54]  A. Miyazaki,et al.  Galactic Center Mini-spiral by ALMA - Possible Origin of the Central Cluster , 2016, 1602.05325.

[55]  W. Cotton,et al.  Rotation measure synthesis study and polarized properties of PSR J1745−2900 at 7 mm , 2016, 1602.04596.

[56]  Alan Roy,et al.  Calibration of mixed-polarization interferometric observations Tools for the reduction of interferometric data from elements with linear and circular polarization receivers , 2016, 1601.04266.

[57]  P. Ho,et al.  Resolved magnetic-field structure and variability near the event horizon of Sagittarius A* , 2015, Science.

[58]  H. Falcke,et al.  GRMHD simulations of the jet in M87 , 2015 .

[59]  A. Kraus,et al.  A study of a sample of high rotation measure AGNs through multifrequency single dish observations , 2015, 1510.01136.

[60]  J. A. Fern'andez-Ontiveros,et al.  The central parsecs of M87: jet emission and an elusive accretion disc , 2015, 1508.02302.

[61]  Technology,et al.  FIRST DETECTION OF 350 MICRON POLARIZATION FROM A RADIO-LOUD AGN , 2015, 1507.03310.

[62]  L. Rezzolla,et al.  RECOLLIMATION SHOCKS IN MAGNETIZED RELATIVISTIC JETS , 2015, 1505.00933.

[63]  S. Muller,et al.  A strong magnetic field in the jet base of a supermassive black hole , 2015, Science.

[64]  M. Johnson,et al.  PROBING THE PARSEC-SCALE ACCRETION FLOW OF 3C 84 WITH MILLIMETER WAVELENGTH POLARIMETRY , 2014, 1410.5887.

[65]  A. Reichstein,et al.  Are spine–sheath polarization structures in the jets of active galactic nuclei associated with helical magnetic fields? , 2014, 1410.6653.

[66]  A. Beloborodov,et al.  Black hole jets without large-scale net magnetic flux , 2014, 1410.0374.

[67]  P. Koch,et al.  MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY , 2014, 1402.5238.

[68]  Bonn,et al.  A simultaneous 3.5 and 1.3 mm polarimetric survey of active galactic nuclei in the northern sky , 2014, 1402.0717.

[69]  S. Muller,et al.  UVMULTIFIT: A versatile tool for fitting astronomical radio interferometric data , 2014, 1401.4984.

[70]  M. Eracleous,et al.  Spectral Models for Low-luminosity Active Galactic Nuclei in LINERs: The Role of Advection-dominated Accretion and Jets , 2013, 1312.1982.

[71]  M. Kino,et al.  ALMA Continuum Spectrum of the M87 Nucleus - Quasi-simultaneous continuum observations at bands-3, 6, 7, and 9 , 2013 .

[72]  R. P. Eatough,et al.  A strong magnetic field around the supermassive black hole at the centre of the Galaxy , 2013, Nature.

[73]  Mareki Honma,et al.  THE INNERMOST COLLIMATION STRUCTURE OF THE M87 JET DOWN TO ∼10 SCHWARZSCHILD RADII , 2013, 1308.1411.

[74]  Alan E. E. Rogers,et al.  Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87 , 2012, Science.

[75]  J. Anderson,et al.  M 87 at metre wavelengths: the LOFAR picture , 2012, 1210.1346.

[76]  J. Lacy,et al.  IONIZED GAS IN THE GALACTIC CENTER: NEW OBSERVATIONS AND INTERPRETATION , 2012, 1206.2650.

[77]  W. Alef,et al.  On the calibration of full-polarization 86 GHz global VLBI observations , 2012, 1203.1424.

[78]  R. Neri,et al.  The first IRAM/PdBI polarimetric millimeter survey of active galactic nuclei - II. Activity and properties of individual sources , 2012, 1202.4209.

[79]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[80]  C. Villforth,et al.  Optical polarization angle and VLBI jet direction in the binary black hole model of OJ287 , 2011, 1111.1539.

[81]  Eric Agol,et al.  The size of the jet launching region in M87 , 2011, 1109.6011.

[82]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[83]  T. Krichbaum,et al.  High‐frequency very long baseline interferometry studies of NRAO 530 , 2011, 1108.0152.

[84]  J. Moran,et al.  THE CIRCULAR POLARIZATION OF SAGITTARIUS A* AT SUBMILLIMETER WAVELENGTHS , 2011, 1105.0427.

[85]  A. Broderick,et al.  PARSEC-SCALE FARADAY ROTATION MEASURES FROM GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS , 2010, 1006.5015.

[86]  A. Fontana,et al.  The first IRAM/PdBI polarimetric millimeter survey of active galactic nuclei I. Global properties of the sample , , 2010, 1003.3205.

[87]  W. Goss,et al.  DYNAMICS OF IONIZED GAS AT THE GALACTIC CENTER: VERY LARGE ARRAY OBSERVATIONS OF THE THREE-DIMENSIONAL VELOCITY FIELD AND LOCATION OF THE IONIZED STREAMS IN SAGITTARIUS A WEST , 2009, 0904.3133.

[88]  D. Iono,et al.  DISENTANGLING THE CIRCUMNUCLEAR ENVIRONS OF CENTAURUS A. I. HIGH-RESOLUTION MOLECULAR GAS IMAGING , 2009, 0901.1656.

[89]  A. Loeb,et al.  IMAGING THE BLACK HOLE SILHOUETTE OF M87: IMPLICATIONS FOR JET FORMATION AND BLACK HOLE SPIN , 2008, 0812.0366.

[90]  J. Algaba,et al.  The 15-43 GHz parsec-scale circular polarization of 41 active galactic nuclei , 2008, 0809.2556.

[91]  A. Niell,et al.  Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.

[92]  A. Marscher,et al.  Faraday Rotation and Polarization Gradients in the Jet of 3C 120: Interaction with the External Medium and a Helical Magnetic Field? , 2008, 0805.4797.

[93]  M. Kidger,et al.  A massive binary black-hole system in OJ 287 and a test of general relativity , 2008, Nature.

[94]  L. Ho Nuclear Activity in Nearby Galaxies , 2008, 0803.2268.

[95]  J. Moran,et al.  To appear in the Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 AN UNAMBIGUOUS DETECTION OF FARADAY ROTATION IN SAGITTARIUS A* , 2006 .

[96]  F. Walter,et al.  A Search for Molecular Gas in the Nucleus of M87 and Implications for the Fueling of Supermassive Black Holes , 2006, astro-ph/0610488.

[97]  A. Marscher,et al.  Relativistic Jets in Active Galactic Nuclei , 2006 .

[98]  H. Falcke,et al.  The Rotation Measure and 3.5 Millimeter Polarization of Sagittarius A* , 2006, astro-ph/0606381.

[99]  J. McKinney General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[100]  J. M. Moran,et al.  Interferometric Measurements of Variable 340 GHz Linear Polarization in Sagittarius A* , 2005, astro-ph/0511653.

[101]  K. Institute,et al.  Faraday rotation measure synthesis , 2005, astro-ph/0507349.

[102]  M. Cohen,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. XI. SPECTRAL DISTRIBUTIONS , 2014, 1404.0014.

[103]  H. Falcke,et al.  Variable Linear Polarization from Sagittarius A*: Evidence of a Hot Turbulent Accretion Flow , 2004, astro-ph/0411551.

[104]  H. Falcke,et al.  The twin-jet system in NGC 1052: VLBI-scrutiny of the obscuring torus , 2004, astro-ph/0407283.

[105]  R. Zavala,et al.  A View through Faraday's Fog 2: Parsec Scale Rotation Measures in 40 AGN , 2004 .

[106]  National Radio Astronomy Observatory,et al.  A View through Faraday’s Fog. II. Parsec-Scale Rotation Measures in 40 Active Galactic Nuclei , 2003, astro-ph/0405534.

[107]  Geoffrey C. Bower,et al.  Interferometric Detection of Linear Polarization from Sagittarius A* at 230 GHz , 2003, astro-ph/0302227.

[108]  S. Iguchi,et al.  A Helical Magnetic Field in the jet of 3C 273(Session 1:Astrophysical Jets,High-Energy Emission from Accreting Compact Objects,Korea-Japan Seminar) , 2002, astro-ph/0205497.

[109]  Tiziana Di Matteo,et al.  Accretion onto the Supermassive Black Hole in M87 , 2002, astro-ph/0202238.

[110]  H. Falcke,et al.  The Spectrum and Variability of Circular Polarization in Sagittarius A* from 1.4 to 15 GHz , 2002, astro-ph/0202138.

[111]  H. Falcke,et al.  Circular polarization of radio emission from relativistic jets , 2001, astro-ph/0112398.

[112]  H. Falcke,et al.  BIMA Observations of Linear Polarization in Sagittarius A* at 112 GHz , 2001, astro-ph/0106146.

[113]  T. Jones The Magnetic Field Geometry in M82 and Centaurus A , 2000, astro-ph/0009122.

[114]  E. Quataert,et al.  Convection-dominated Accretion Flows , 1999, astro-ph/9912440.

[115]  H. Falcke,et al.  The Linear Polarization of Sagittarius A*. II. VLA and BIMA Polarimetry at 22, 43, and 86 GHz , 1999, astro-ph/9907282.

[116]  H. Falcke,et al.  Detection of Circular Polarization in the Galactic Center Black Hole Candidate Sagittarius A* , 1999, astro-ph/9907215.

[117]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[118]  D. Sokoloff,et al.  Depolarization and Faraday effects in galaxies , 1998 .

[119]  D. Kazanas,et al.  A Cosmic Battery , 1998, astro-ph/9808223.

[120]  Philippe Veron,et al.  A catalogue of quasars and active nuclei: 12th edition , 1998 .

[121]  Cambridge,et al.  The 'Quiescent' black hole in M87 , 1996, astro-ph/9610097.

[122]  D. Lynden-Bell Magnetic collimation by accretion discs of quasars and stars , 1996 .

[123]  J. Biretta,et al.  Detection of Proper Motions in the M87 Jet , 1995 .

[124]  R. Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994, astro-ph/9403052.

[125]  M. Norman,et al.  VLA Observations of the Inner Lobes of Centaurus A , 1992 .

[126]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[127]  R. Perley The positions, structures, and polarizations of 404 compact radio sources , 1982 .

[128]  D. F. Cioffi,et al.  Internal Faraday rotation effects in transparent synchrotron sources , 1980 .

[129]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .

[130]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[131]  M. Schmidt,et al.  3C 273 : A Star-Like Object with Large Red-Shift , 1963, Nature.

[132]  H. Falcke,et al.  The Rotation Measure and 3.5 Mm Polarization of Sgr A , 2006 .

[133]  M. Lister,et al.  MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. II. First-Epoch 15 GHz Circular Polarization Results , 2006 .

[134]  P. Hughes Beams and jets in astrophysics , 1991 .

[135]  J. Roberts,et al.  Radio Astrophysics : Nonthermal Processes in Galactic and Extragalactic Sources , 1970 .