Coherent lightwave systems for interoffice and loop-feeder applications

Coherent lightwave systems offer the potential for providing many closely spaced multigigabit channels. This is attractive for interoffice and loop-feeder applications, provided the resulting systems are based on a robust technology and incorporate a high level of integration. Further research is needed for coherent lightwave technology to become commercially viable in these applications, especially in the areas of device performance, multichannel capability, level of integration, and transmission speed.

[1]  R. Braun,et al.  Coherent optical-fibre subscriber line , 1985 .

[2]  K. Iwashita,et al.  400 Mbit/s optical FSK transmission experiment over 270 km of single-mode fibre , 1986 .

[3]  T. P. Lee,et al.  Frequency modulation of a narrow linewidth distributed-feedback laser monolithically integrated with a tunable wave-guide , 1987 .

[4]  Richard E. Wagner Future 1.55-µm undersea lightwave systems , 1984 .

[5]  T. G. Hodgkinson,et al.  Receiver analysis for synchronous coherent optical fiber transmission systems , 1987 .

[6]  T. Okoshi,et al.  Polarization-state control schemes for heterodyne or homodyne optical fiber communications , 1985, IEEE Transactions on Electron Devices.

[7]  P. Meissner,et al.  Reliable laboratory transmitter with submegahertz linewidth , 1986 .

[8]  R. D. Standley,et al.  A 560-Mbit/s FSK heterodyne transmission experiment using 1500-nm DFB lasers and conventional single-mode fiber , 1986 .

[9]  Lloyd R. Linnell A Wide-Band Local Access System Using Emerging-Technology Components , 1986, IEEE J. Sel. Areas Commun..

[10]  H. Kobrinski Applications Of Coherent Optical Communication In The Network Environment , 1985, Optics & Photonics.

[11]  D. Marcuse,et al.  Carrier-induced phase noise in angle-modulated optical-fiber systems , 1984 .

[12]  John E. Bowers,et al.  Millimetre-waveguide-mounted InGaAs photodetectors , 1986 .

[13]  Ikuo Mito,et al.  Long-span optical FSK heterodyne single-filter detection transmission experiment using a phase-tunable DFB laser diode , 1986 .

[14]  Joe C. Campbell,et al.  68.3 km transmission with 1.37 Tbit km/s capacity using wavelength division multiplexing of ten single-frequency lasers at 1.5 μm , 1985 .

[15]  R. Stolen,et al.  Parametric amplification and frequency conversion in optical fibers , 1982 .

[16]  R. Alferness,et al.  Coherent lightwave transmission over 150 km fibre lengths at 400 Mbit/s and 1 Gbit/s data rates using phase modulation , 1986 .

[17]  R. W. Tkach,et al.  Phase modulation to amplitude modulation conversion of CW laser light in optical fibres , 1986 .

[18]  Nori Shibata,et al.  Crosstalk due to three-wave mixing process in a coherent single-mode transmission line , 1986 .

[19]  Katsumi Emura,et al.  Novel optical FSK heterodyne single filter detection system using a directly modulated DFB-laser diode , 1984 .

[20]  Katsumi Emura,et al.  Realisation of flat FM response by directly modulating a phase tunable DFB laser diode , 1985 .

[21]  R. A. Linke,et al.  Transient chirping in single-frequency lasers: lightwave systems consequences , 1984 .

[22]  S. G. Menocal,et al.  Characteristics of linewidth narrowing of a 1.5 μm DFB laser with a short GRIN-rod external coupled cavity , 1985 .

[23]  Richard A. Linke High-speed fiber-optic communications trends , 1986 .

[24]  D. Cotter,et al.  Stimulated Brillouin Scattering in Monomode Optical Fiber , 1983 .

[25]  P. Healey Effect of intermodulation in multichannel optical heterodyne systems , 1985 .

[26]  R. Wyatt,et al.  Tunable narrow line external cavity lasers for coherent optical systems , 1985 .

[27]  Takanori Okoshi Recent advances in coherent optical fiber communication systems , 1987 .

[28]  J. L. Gimlett,et al.  FSK heterodyne transmission experiments at 560 Mbit/s and 1 Gbit/s , 1987 .

[29]  Sadakuni Shimada,et al.  Fiber-optic subscriber loop system for integrated services: strategy to spread fiber into the subscriber network , 1986 .

[30]  S. Rashleigh Origins and control of polarization effects in single-mode fibers (A) , 1982 .

[31]  John E. Bowers,et al.  InGaAs PIN photodetectors with modulation response to millimetre wavelengths , 1985 .

[32]  V. Chan,et al.  Local-oscillator excess-noise suppression for homodyne and heterodyne detection. , 1983, Optics letters.

[33]  Richard Wyatt,et al.  Spectral linewidth of external cavity semiconductor lasers with strong, frequency-selective feedback , 1985 .

[34]  I. W. Stanley,et al.  Application Of Coherent Optical Techniques To Broadband Networks , 1987 .

[35]  R. Paski,et al.  A regenerator chip set for high speed digital transmission , 1984, 1984 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[36]  Yoshihisa Yamamoto,et al.  Coherent optical fiber transmission systems , 1981 .

[37]  K. Tajima,et al.  Self-amplitude modulation in PSK coherent optical transmission systems , 1986 .

[38]  N. Cheung,et al.  1 Gbit/s optical FSK heterodyne transmission experiment over 100 km of single-mode fibre , 1986 .

[39]  Ikuo Mito,et al.  Low-threshold and high temperature single-longitudinal-mode operation of 1.55 μm-band DFB-DC-PBH LDs , 1984 .

[40]  Hiroyuki Kano,et al.  FSK transmission experiment using 10.5 km polarisation-maintaining fibre , 1986 .

[41]  K. Gleason,et al.  A DC-12 GHz monolithic GaAsFET distributed amplifier , 1982, IEEE Transactions on Electron Devices.

[42]  A. R. Chraplyvy,et al.  Measurement of crossphase modulation in coherent wavelength-division multiplexing using injection lasers , 1984 .

[43]  L. Kazovsky Multichannel coherent optical communications systems , 1987 .

[44]  Haim Kobrinski,et al.  Application of Wavelength Division Multiplexing to Communication Network Architectures , 1986, ICC.

[45]  Ralf-Peter Braun,et al.  Crosstalk due to stimulated Brillouin scattering in monomode fibre , 1985 .

[46]  Katherine L. Hall,et al.  Balanced dual-detector receiver for optical heterodyne communication at Gbit/s rates , 1986 .

[47]  R. E. Wagner,et al.  Phenomenological approach to polarisation dispersion in long single-mode fibres , 1986 .

[48]  Leonid G. Kazovsky Coherent Optical Receivers: Performance Analysis And Laser Linewidth Requirements , 1986 .

[49]  R. Smith Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering. , 1972, Applied optics.

[50]  R. C. Booth,et al.  Integrated optic devices for coherent transmission , 1986 .

[51]  Masato Ishino,et al.  Narrow spectral linewidth characteristics of monolithic integrated-passive-cavity InGaAsP/InP semiconductor lasers , 1985 .

[52]  R. Williams,et al.  A High Performance 2-18.5 GHz Distributed Amplifier, Theory and Experiment , 1986, 1986 IEEE MTT-S International Microwave Symposium Digest.