Lunar heat flow: Regional prospective of the Apollo landing sites

[1] We reexamine the Apollo Heat Flow Experiment in light of new orbital data. Using three-dimensional thermal conduction models, we examine effects of crustal thickness, density, and radiogenic abundance on measured heat flow values at the Apollo 15 and 17 sites. These models show the importance of regional context on heat flux measurements. We find that measured heat flux can be greatly altered by deep subsurface radiogenic content and crustal density. However, total crustal thickness and the presence of a near-surface radiogenic-rich ejecta provide less leverage, representing only minor (<1.5 mW m−2) perturbations on surface heat flux. Using models of the crust implied by Gravity Recovery and Interior Laboratory results, we found that a roughly 9–13 mW m−2 mantle heat flux best approximate the observed heat flux. This equates to a total mantle heat production of 2.8–4.1 × 1011 W. These heat flow values could imply that the lunar interior is slightly less radiogenic than the Earth's mantle, perhaps implying that a considerable fraction of terrestrial mantle material was incorporated at the time of formation. These results may also imply that heat flux at the crust-mantle boundary beneath the Procellarum potassium, rare earth element, and phosphorus (KREEP) Terrane (PKT) is anomalously elevated compared to the rest of the Moon. These results also suggest that a limited KREEP-rich layer exists beneath the PKT crust. If a subcrustal KREEP-rich layer extends below the Apollo 17 landing site, required mantle heat flux can drop to roughly 7 mW m−2, underlining the need for future heat flux measurements outside of the radiogenic-rich PKT region.

[1]  A. E. Ringwood,et al.  A dynamic model for mare basalt petrogenesis , 1976 .

[2]  M. Zuber,et al.  The composition and origin of the lunar crust: Constraints from central peaks and crustal thickness modeling , 2001 .

[3]  W. Banerdt,et al.  LUNETTE: ESTABLISHING A LUNAR GEOPHYSICAL NETWORK WITHOUT NUCLEAR POWER THROUGH A DISCOVERY-CLASS MISSION , 2009 .

[4]  P. Spudis,et al.  A new technique for estimating the thickness of mare basalts in Imbrium Basin , 2009 .

[5]  G. Ryder,et al.  Serenitatis and Imbrium impact melts - Implications for large-scale layering in the lunar crust , 1977 .

[6]  R. Reedy,et al.  Element concentrations from lunar orbital gamma-ray measurements , 1974 .

[7]  Roger J. Phillips,et al.  The “Procellarum KREEP Terrane”: Implications for mare volcanism and lunar evolution , 2000 .

[8]  A. E. Ringwood,et al.  Terrestrial origin of the Moon , 1986, Nature.

[9]  P. Spudis,et al.  The formation of Hadley Rille and implications for the geology of the Apollo 15 region , 1988 .

[10]  H. Haack,et al.  Effects of regolith/megaregolith insulation on the cooling histories of differentiated asteroids , 1990 .

[11]  David E. Smith,et al.  Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission , 2013, Science.

[12]  M. Toksöz,et al.  Thermal evolutions of the terrestrial planets , 1975 .

[13]  P. H. Warren,et al.  Compositional structure within the lunar crust as constrained by Lunar Prospector thorium data , 2001 .

[14]  M. Grott,et al.  On the spatial variability of the Martian Elastic Lithosphere Thickness: Evidence for Mantle Plumes? , 2009 .

[15]  G. Ryder Coincidence in Time of the Imbrium Basin Impact and Apollo 15 KREEP Volcanic Flows: The Case for Impact-Induced Melting , 1994 .

[16]  Roger J. Phillips,et al.  Potential anomalies on a sphere: Applications to the thickness of the lunar crust , 1998 .

[17]  N. Zhang,et al.  Effects of lunar cumulate mantle overturn and megaregolith on the expansion and contraction history of the Moon , 2013 .

[18]  Axel Hagermann,et al.  Ejecta deposit thickness, heat flow, and a critical ambiguity on the Moon , 2006 .

[19]  M. Wieczorek,et al.  Crustal thickness of the Moon: New constraints from gravity inversions using polyhedral shape models , 2007 .

[20]  C. Jaupart,et al.  Heat Flow and Thermal Structure of the Lithosphere , 2015 .

[21]  P. Spudis Composition and origin of the Apennine Bench Formation , 1978 .

[22]  J. B. Morton,et al.  Interpretation of lunar heat flow data , 1975 .

[23]  Sami W. Asmar,et al.  The Crust of the Moon as Seen by GRAIL , 2012, Science.

[24]  J. J. Gillis,et al.  Major lunar crustal terranes: Surface expressions and crust‐mantle origins , 1999 .

[25]  S. Keihm,et al.  The Revised Lunar Heat Flow Values , 1976 .

[26]  A. Hagermann,et al.  The Long Term Temperature Variation in the Lunar Subsurface , 2008 .

[27]  Paul H. Warren,et al.  The origin of KREEP , 1979 .

[28]  W. D. Carrier Apollo drill core depth relationships , 1974 .

[29]  R. Smoluchowski Amorphous ice and the behavior of cometary nuclei , 1981 .

[30]  T. Spohn,et al.  Thermal history of the Moon: Implications for an early core dynamo and post-accertional magmatism , 1997 .

[31]  H. Wiesmann,et al.  Chemical composition of lunar anorthosites and their parent liquids. , 1971 .

[32]  R. Grimm Geophysical constraints on the lunar Procellarum KREEP Terrane , 2013 .

[33]  James W. Head,et al.  Radial thickness variation in impact crater ejecta - Implications for lunar basin deposits , 1973 .

[34]  D. Prialnik,et al.  Monte Carlo Modeling of the Thermal Conductivity of Porous Cometary Ice , 2002 .

[35]  K. Rasmussen,et al.  Megaregolith insulation, internal temperatures, and bulk uranium content of the moon , 1987 .

[36]  Doris Breuer,et al.  Asymmetric thermal evolution of the Moon , 2012 .

[37]  M. Segura,et al.  Enceladus Heat Flow from High Spatial Resolution Thermal Emission Observations , 2013 .

[38]  David E. Smith,et al.  Ancient Igneous Intrusions and Early Expansion of the Moon Revealed by GRAIL Gravity Gradiometry , 2013, Science.

[39]  M. Zuber,et al.  A dynamic origin for the global asymmetry of lunar mare basalts , 2000 .

[40]  Philippe Lognonné,et al.  A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon , 2003 .

[41]  J. Head,et al.  Lunar mascon basins - Lava filling, tectonics, and evolution of the lithosphere , 1980 .

[42]  A. Hagermann,et al.  Lost Apollo Heat Flow Data Suggest a Different Lunar Bulk Composition , 2007 .

[43]  D. Blaney,et al.  Upper bound on Io's heat flow , 2000 .

[44]  S. Maurice,et al.  Global elemental maps of the moon: the Lunar Prospector gamma-Ray spectrometer. , 1998, Science.

[45]  Paul H. Warren,et al.  Megaregolith thickness, heat flow, and the bulk composition of the Moon , 1985, Nature.

[46]  Hiroshi Araki,et al.  Crustal thickness of the Moon: Implications for farside basin structures , 2009 .

[47]  Kelly Snook,et al.  Diviner Lunar Radiometer Observations of Cold Traps in the Moon’s South Polar Region , 2010, Science.

[48]  L. Haskin The Imbrium impact event and the thorium distribution at the lunar highlands surface , 1998 .

[49]  C. Allen,et al.  The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment , 2010 .