Asymmetry of $\mathbb P$-Functors
暂无分享,去创建一个
[1] A. Hochenegger,et al. Frobenius and Spherical Codomains and Neighbourhoods , 2020, Documenta Mathematica.
[2] Ed Segal,et al. All autoequivalences are spherical twists , 2016, 1603.06717.
[3] Martin Kalck,et al. Spherical subcategories in algebraic geometry , 2012, 1208.4046.
[4] N. Addington. New derived symmetries of some hyperkähler varieties , 2011, 1112.0487.
[5] R. Anno,et al. Spherical DG-functors , 2013, 1309.5035.
[6] Sabin Cautis. Flops and about: a guide , 2011, 1111.0688.
[7] D. Ploog,et al. On autoequivalences of some Calabi--Yau and hyperk\"ahler varieties , 2012, 1212.4604.
[8] D. Ploog,et al. Autoequivalences of toric surfaces , 2010, 1010.1717.
[9] Daniel Huybrechts,et al. Fourier-Mukai transforms in algebraic geometry , 2006 .
[10] Richard P. Thomas,et al. ℙ-objects and autoequivalences of derived categories , 2005, math/0507040.
[11] Marc Nieper-Wiβkirchen. Chern numbers and Rozansky-Witten invariants of compact hyper-Kähler manifolds , 2004 .
[12] A. Bondal,et al. Reconstruction of a Variety from the Derived Category and Groups of Autoequivalences , 1997, Compositio Mathematica.
[13] Richard P. Thomas,et al. Braid group actions on derived categories of coherent sheaves , 2000, math/0001043.
[14] H. Grauert. Über Modifikationen und exzeptionelle analytische Mengen , 1962 .