Preliminary results from the White Sands Missile Range sonic boom propagation experiment

Sonic boom bow shock amplitude and rise time statistics from a recent sonic boom propagation experiment are presented. Distributions of bow shock overpressure and rise time measured under different atmospheric turbulence conditions for the same test aircraft are quite different. The peak overpressure distributions are skewed positively, indicating a tendency for positive deviations from the mean to be larger than negative deviations. Standard deviations of overpressure distributions measured under moderate turbulence were 40 percent larger than those measured under low turbulence. As turbulence increased, the difference between the median and the mean increased, indicating increased positive overpressure deviations. The effect of turbulence was more readily seen in the rise time distributions. Under moderate turbulence conditions, the rise time distribution means were larger by a factor of 4 and the standard deviations were larger by a factor of 3 from the low turbulence values. These distribution changes resulted in a transition from a peaked appearance of the rise time distribution for the morning to a flattened appearance for the afternoon rise time distributions. The sonic boom propagation experiment consisted of flying three types of aircraft supersonically over a ground-based microphone array with concurrent measurements of turbulence and other meteorological data. The test aircraft were a T-38, an F-15, and an F-111, and they were flown at speeds of Mach 1.2 to 1.3, 30,000 feet above a 16 element, linear microphone array with an inter-element spacing of 200 ft. In two weeks of testing, 57 supersonic passes of the test aircraft were flown from early morning to late afternoon.