Solving elliptic problems with discontinuities on irregular domains - the Voronoi Interface Method

We introduce a simple method, dubbed the Voronoi Interface Method, to solve Elliptic problems with discontinuities across the interface of irregular domains. This method produces a linear system that is symmetric positive definite with only its right-hand-side affected by the jump conditions. The solution and the solution's gradients are second-order accurate and first-order accurate, respectively, in the L ∞ norm, even in the case of large ratios in the diffusion coefficient. This approach is also applicable to arbitrary meshes. Additional degrees of freedom are placed close to the interface and a Voronoi partition centered at each of these points is used to discretize the equations in a finite volume approach. Both the locations of the additional degrees of freedom and their Voronoi discretizations are straightforward in two and three spatial dimensions.

[1]  Barbara I. Wohlmuth,et al.  Mortar Finite Elements for Interface Problems , 2004, Computing.

[2]  Frédéric Gibou,et al.  A second order accurate level set method on non-graded adaptive cartesian grids , 2007, J. Comput. Phys..

[3]  Petter Andreas Berthelsen,et al.  A decomposed immersed interface method for variable coefficient elliptic equations with non-smooth and discontinuous solutions , 2004 .

[4]  Zhilin Li,et al.  The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (Frontiers in Applied Mathematics) , 2006 .

[5]  Xu-Dong Liu,et al.  Convergence of the ghost fluid method for elliptic equations with interfaces , 2003, Math. Comput..

[6]  T. Belytschko,et al.  The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns , 2006 .

[7]  Phillip Colella,et al.  Author ' s personal copy A Cartesian grid embedded boundary method for solving the Poisson and heat equations with discontinuous coefficients in three dimensions , 2011 .

[8]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[9]  Volker Gravemeier,et al.  Numerical simulation of premixed combustion using an enriched finite element method , 2009, J. Comput. Phys..

[10]  Ronald Fedkiw,et al.  The immersed interface method. Numerical solutions of PDEs involving interfaces and irregular domains , 2007, Math. Comput..

[11]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[12]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[13]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[14]  Andreas Wiegmann,et al.  The Explicit-Jump Immersed Interface Method: Finite Difference Methods for PDEs with Piecewise Smooth Solutions , 2000, SIAM J. Numer. Anal..

[15]  Chris H Rycroft,et al.  VORO++: a three-dimensional voronoi cell library in C++. , 2009, Chaos.

[16]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[17]  Wolfgang L. Wendland,et al.  A symmetric boundary method for contact problems with friction , 1999 .

[18]  Ronald Fedkiw,et al.  High Resolution Sharp Computational Methods for Elliptic and Parabolic Problems in Complex Geometries , 2013, J. Sci. Comput..

[19]  D. White,et al.  6th International Meshing Roundtable '97 , 1997 .

[20]  Frédéric Gibou,et al.  A level set approach for diffusion and Stefan-type problems with Robin boundary conditions on quadtree/octree adaptive Cartesian grids , 2013, J. Comput. Phys..

[21]  R. Vanselow,et al.  Relations between FEM and FVM applied to the poisson equation , 1996, Computing.

[22]  A. Mayo The Fast Solution of Poisson’s and the Biharmonic Equations on Irregular Regions , 1984 .

[23]  Timothy P. Chartier,et al.  A Comparison of Algebraic Multigrid and Geometric Immersed Interface Multigrid Methods for Interface Problems , 2005, SIAM J. Sci. Comput..

[24]  Eftychios Sifakis,et al.  A second order virtual node method for elliptic problems with interfaces and irregular domains in three dimensions , 2012, J. Comput. Phys..

[25]  Frédéric Gibou,et al.  An efficient fluid-solid coupling algorithm for single-phase flows , 2009, J. Comput. Phys..

[26]  Frédéric Gibou,et al.  A second order accurate projection method for the incompressible Navier-Stokes equations on non-graded adaptive grids , 2006, J. Comput. Phys..

[27]  Giovanni Russo,et al.  Second Order Multigrid Methods for Elliptic Problems with Discontinuous Coefficients on an Arbitrary Interface, I: One Dimensional Problems , 2011, 1111.1167.

[28]  Tianbing Chen,et al.  Piecewise-polynomial discretization and Krylov-accelerated multigrid for elliptic interface problems , 2008, J. Comput. Phys..

[29]  Ted Belytschko,et al.  A method for dynamic crack and shear band propagation with phantom nodes , 2006 .

[30]  Timothy P. Chartier,et al.  New Geometric Immersed Interface Multigrid Solvers , 2004, SIAM J. Sci. Comput..

[31]  Ronald Fedkiw,et al.  Fracturing Rigid Materials , 2007, IEEE Transactions on Visualization and Computer Graphics.

[32]  Zhilin Li A Fast Iterative Algorithm for Elliptic Interface Problems , 1998 .

[33]  Ivo Babuska,et al.  The finite element method for elliptic equations with discontinuous coefficients , 1970, Computing.

[34]  Arnold Reusken,et al.  An extended pressure finite element space for two-phase incompressible flows with surface tension , 2007, J. Comput. Phys..

[35]  Zhilin Li,et al.  The Immersed Interface/Multigrid Methods for Interface Problems , 2002, SIAM J. Sci. Comput..

[36]  Li-Tien Cheng,et al.  A second-order-accurate symmetric discretization of the Poisson equation on irregular domains , 2002 .

[37]  Bo Li,et al.  Immersed-Interface Finite-Element Methods for Elliptic Interface Problems with Nonhomogeneous Jump Conditions , 2007, SIAM J. Numer. Anal..

[38]  J. W. Purvis,et al.  Prediction of critical Mach number for store configurations , 1979 .

[39]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[40]  R. Fedkiw,et al.  A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem , 2005 .

[41]  Ronald Fedkiw,et al.  Arbitrary cutting of deformable tetrahedralized objects , 2007, SCA '07.

[42]  Eftychios Sifakis,et al.  An XFEM method for modeling geometrically elaborate crack propagation in brittle materials , 2011 .

[43]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[44]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[45]  John E. Dolbow,et al.  On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method , 2004 .

[46]  James H. Bramble,et al.  A finite element method for interface problems in domains with smooth boundaries and interfaces , 1996, Adv. Comput. Math..

[47]  Tao Lin,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[48]  Maksymilian Dryja,et al.  A Neumann-Neumann algorithm for a mortar discretization of elliptic problems with discontinuous coefficients , 2005, Numerische Mathematik.

[49]  Ronald Fedkiw,et al.  A virtual node algorithm for changing mesh topology during simulation , 2004, SIGGRAPH 2004.

[50]  Robert D. Falgout,et al.  hypre: A Library of High Performance Preconditioners , 2002, International Conference on Computational Science.

[51]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[52]  Shan Zhao,et al.  High-order FDTD methods via derivative matching for Maxwell's equations with material interfaces , 2004 .

[53]  Zhilin Li,et al.  The immersed finite volume element methods for the elliptic interface problems , 1999 .

[54]  Chang-Ock Lee,et al.  A discontinuous Galerkin method for elliptic interface problems with application to electroporation , 2009 .

[55]  N. Sukumar,et al.  Voronoi cell finite difference method for the diffusion operator on arbitrary unstructured grids , 2003 .

[56]  Frédéric Gibou,et al.  Efficient symmetric discretization for the Poisson, heat and Stefan-type problems with Robin boundary conditions , 2010, J. Comput. Phys..

[57]  Michael Oevermann,et al.  A sharp interface finite volume method for elliptic equations on Cartesian grids , 2009, J. Comput. Phys..

[58]  Liqun Wang,et al.  Numerical method for solving matrix coefficient elliptic equation with sharp-edged interfaces , 2010, J. Comput. Phys..

[59]  M. Cisternino,et al.  A Parallel Second Order Cartesian Method for Elliptic Interface Problems , 2012 .

[60]  Giovanni Russo,et al.  Finite-difference ghost-point multigrid methods on Cartesian grids for elliptic problems in arbitrary domains , 2013, J. Comput. Phys..

[61]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .

[62]  R. Fedkiw,et al.  A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains , 2000 .

[63]  Jun Zou,et al.  A mortar element method for elliptic problems with discontinuous coefficients , 2002 .

[64]  Guo-Wei Wei,et al.  Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces , 2007, J. Comput. Phys..

[65]  Thierry Colin,et al.  A second order Cartesian finite volume method for elliptic interface and embedded Dirichlet problems , 2013 .

[66]  A. Lew,et al.  A discontinuous‐Galerkin‐based immersed boundary method , 2008 .