Two-dimensional altermagnets: A minimal microscopic model

We propose a minimal toy model for a two-dimensional altermagnet. The model unravels altermagnetic properties at a microscopic level. We find spin-split electron- and non-degenerate magnon bands with a $d$-wave symmetry. We use the model to explore magnon-mediated superconductivity in altermagnets. The dominant superconducting state is spin-polarized with a $p$-wave symmetry. The state adopts its characteristics from the spin-split electron bands. Furthermore, we find that the superconducting critical temperature of altermagnets can be significantly enhanced by tuning the chemical potential.

[1]  Hongxin Yang,et al.  Efficient spin Seebeck and spin Nernst effects of magnons in altermagnets , 2023, Physical Review B.

[2]  J. Sinova,et al.  Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO$_2$ , 2023, 2306.02170.

[3]  Zhigang Wu,et al.  Topological superconductivity in two-dimensional altermagnetic metals , 2023, Physical Review B.

[4]  M. Papaj Andreev reflection at altermagnet/superconductor interface , 2023, 2305.03856.

[5]  Y. Mokrousov,et al.  Crystal Thermal Transport in Altermagnetic RuO_{2}. , 2023, Physical review letters.

[6]  A. Brataas,et al.  Andreev reflection in altermagnets , 2023, Physical Review B.

[7]  T. Neupert,et al.  Finite-momentum Cooper pairing in proximitized altermagnets , 2023, Nature communications.

[8]  N. Spaldin,et al.  Magnetic octupoles as the order parameter for unconventional antiferromagnetism , 2022, 2212.03756.

[9]  I. Turek,et al.  Chiral Magnons in Altermagnetic RuO_{2}. , 2022, Physical review letters.

[10]  A. Sudbø,et al.  Topological Superconductivity Mediated by Skyrmionic Magnons. , 2022, Physical review letters.

[11]  J. Sinova,et al.  An anomalous Hall effect in altermagnetic ruthenium dioxide , 2020, Nature Electronics.

[12]  A. Brataas,et al.  Low-energy Properties of Electrons and Holes in CuFeS$_2$ , 2022, 2208.08242.

[13]  Hui Liu,et al.  Spin-split collinear antiferromagnets: a large-scale ab-initio study , 2022, Materials Today Physics.

[14]  Tilted spin current generated by an antiferromagnet , 2022, Nature Electronics.

[15]  J. Sinova,et al.  Emerging Research Landscape of Altermagnetism , 2022, Physical Review X.

[16]  I. Mazin Notes on altermagnetism and superconductivity , 2022, 2203.05000.

[17]  Takahiro Tanaka,et al.  Observation of Spin-Splitter Torque in Collinear Antiferromagnetic RuO_{2}. , 2021, Physical review letters.

[18]  Q. Wang,et al.  Observation of Spin Splitting Torque in a Collinear Antiferromagnet RuO_{2}. , 2021, Physical review letters.

[19]  M. Johannes,et al.  Prediction of unconventional magnetism in doped FeSb2 , 2021, Proceedings of the National Academy of Sciences.

[20]  A. Sudbø,et al.  Eliashberg study of superconductivity induced by interfacial coupling to antiferromagnets , 2021, Physical Review B.

[21]  Qihang Liu,et al.  Spin-Group Symmetry in Magnetic Materials with Negligible Spin-Orbit Coupling , 2021, Physical Review X.

[22]  J. Sinova,et al.  Giant and Tunneling Magnetoresistance in Unconventional Collinear Antiferromagnets with Nonrelativistic Spin-Momentum Coupling , 2021, Physical Review X.

[23]  E. Tsymbal,et al.  Spin-neutral currents for spintronics , 2021, Nature Communications.

[24]  R. Evarestov,et al.  Colossal Spin Splitting in the Monolayer of the Collinear Antiferromagnet MnF2. , 2021, The journal of physical chemistry letters.

[25]  Y. Motome,et al.  Perovskite as a spin current generator , 2020, 2011.12459.

[26]  A. Zunger,et al.  Prediction of low-Z collinear and noncollinear antiferromagnetic compounds having momentum-dependent spin splitting even without spin-orbit coupling , 2020, 2008.08532.

[27]  A. Zunger,et al.  Giant momentum-dependent spin splitting in centrosymmetric low- Z antiferromagnets , 2020 .

[28]  J. Sinova,et al.  Efficient Electrical Spin Splitter Based on Nonrelativistic Collinear Antiferromagnetism. , 2020, Physical review letters.

[29]  S. Hayami,et al.  Momentum-Dependent Spin Splitting by Collinear Antiferromagnetic Ordering , 2019, Journal of the Physical Society of Japan.

[30]  A. Brataas,et al.  Superconductivity at metal-antiferromagnetic insulator interfaces , 2019, Physical Review B.

[31]  A. Brataas,et al.  Enhancement of superconductivity mediated by antiferromagnetic squeezed magnons , 2019, Physical Review B.

[32]  A. Hariki,et al.  Antiferromagnetism in RuO2 as d -wave Pomeranchuk instability , 2019, Physical Review B.

[33]  J. Sinova,et al.  Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets , 2019, Science Advances.

[34]  D. Mandrus,et al.  Magnetism in two-dimensional van der Waals materials , 2018, Nature.

[35]  K. Ohno,et al.  Weakly spin-dependent band structures of antiferromagnetic perovskite LaMO3 (M  =  Cr, Mn, Fe) , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  A. Brataas,et al.  Superconductivity induced by interfacial coupling to magnons , 2017, 1707.03754.

[37]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[38]  A. Romero,et al.  First-principles study of pressure-induced structural phase transitions in MnF2. , 2016, Physical chemistry chemical physics : PCCP.

[39]  K. Ohno,et al.  Momentum-dependent band spin splitting in semiconducting MnO2: a density functional calculation. , 2016, Physical chemistry chemical physics : PCCP.

[40]  V. Galitski,et al.  Amperean Pairing at the Surface of Topological Insulators. , 2016, Physical review letters.

[41]  Matthias Eschrig,et al.  Spin-polarized supercurrents for spintronics: a review of current progress , 2015, Reports on progress in physics. Physical Society.

[42]  Jacob Linder,et al.  Superconducting spintronics , 2015, Nature Physics.

[43]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[44]  M. G. Blamire,et al.  Controlled Injection of Spin-Triplet Supercurrents into a Strong Ferromagnet , 2010, Science.

[45]  K. Efetov,et al.  Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures , 2005, cond-mat/0506047.

[46]  Nelson,et al.  Two-dimensional quantum Heisenberg antiferromagnet at low temperatures. , 1989, Physical review. B, Condensed matter.

[47]  J. Schrieffer,et al.  Relation between the Anderson and Kondo Hamiltonians , 1966 .

[48]  K. Cheng Theory of Superconductivity , 1948, Nature.

[49]  K. A. Müller,et al.  Possible High T cSuperconductivity in the Ba — La — Cu — O System , 1993 .

[50]  M. Kupriyanov,et al.  Superconductor-ferromagnet structures , 1992 .