An Implicit Method for Interpolating Two Digital Closed Curves on Parallel Planes

Ardon et al. [2] presented an implicit method for surface segmentation in 3D images. The boundary of the surface is assumed to be constrained by two given curves in the image. In this work we adopt the afore approach to interpolate two given digital curves lying on parallel planes, by introducing an artificial image potential, which is based on a triangular facet surface interpolation technique.

[1]  A. B. Ekoule,et al.  A triangulation algorithm from arbitrary shaped multiple planar contours , 1991, TOGS.

[2]  Thomas Lengauer,et al.  Algorithms—ESA '93 , 1993, Lecture Notes in Computer Science.

[3]  Laurent D. Cohen,et al.  Global Minimum for Active Contour Models: A Minimal Path Approach , 1997, International Journal of Computer Vision.

[4]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[5]  Jerry L. Prince,et al.  An Eulerian PDE approach for computing tissue thickness , 2003, IEEE Transactions on Medical Imaging.

[6]  Baptiste Caramiaux,et al.  Multiresolution morphing for planar curves , 2006, Computing.

[7]  S J Dwyer,et al.  Three-Dimensional Computer Reconstruction from Surface Contours for Head CT Examinations , 1981, Journal of computer assisted tomography.

[8]  D. Meiron,et al.  Efficient algorithms for solving static hamilton-jacobi equations , 2003 .

[9]  Avraham A. Melkman,et al.  On-Line Construction of the Convex Hull of a Simple Polyline , 1987, Inf. Process. Lett..

[10]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[11]  Laurent D. Cohen,et al.  A New Implicit Method for Surface Segmentation by Minimal Paths in 3D Images , 2007 .

[12]  Alfred M. Bruckstein,et al.  Sub-pixel distance maps and weighted distance transforms , 1996, Journal of Mathematical Imaging and Vision.

[13]  Henry Fuchs,et al.  Optimal surface reconstruction from planar contours , 1977, CACM.

[14]  Eric Keppel,et al.  Approximating Complex Surfaces by Triangulation of Contour Lines , 1975, IBM J. Res. Dev..

[15]  Laurent D. Cohen,et al.  Fast Surface Segmentation Guided by User Input Using Implicit Extension of Minimal Paths , 2006, Journal of Mathematical Imaging and Vision.

[16]  Kyu Ho Park,et al.  A heuristic triangulation algorithm for multiple planar contours using an extended double branching procedure , 1994, The Visual Computer.

[17]  L. Cohen Minimal Paths and Fast Marching Methods for Image Analysis , 2006, Handbook of Mathematical Models in Computer Vision.

[18]  Laurent D. Cohen,et al.  Fast Constrained Surface Extraction by Minimal Paths , 2006, International Journal of Computer Vision.

[19]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[20]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[21]  P. Lions,et al.  Viscosity solutions of Hamilton-Jacobi equations , 1983 .

[22]  Thomas W. Sederberg,et al.  Conversion of complex contour line definitions into polygonal element mosaics , 1978, SIGGRAPH.

[23]  Joseph O'Rourke,et al.  On reconstructing polyhedra from parallel slices , 1996, Int. J. Comput. Geom. Appl..

[24]  Leonidas J. Guibas,et al.  Morphing between polylines , 2001, SODA '01.

[25]  Barbara Wolfers,et al.  Surface Reconstruction Between Simple Polygons via Angle Criteria , 1993, ESA.

[26]  Alfred M. Bruckstein,et al.  Finding Shortest Paths on Surfaces Using Level Sets Propagation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..