First Steps Towards Linking Membrane Depth and the Polynomial Hierarchy
暂无分享,去创建一个
[1] Niall Murphy,et al. Active Membrane Systems Without Charges and Using Only Symmetric Elementary Division Characterise P , 2007, Workshop on Membrane Computing.
[2] Mario J. Pérez-Jiménez,et al. A Logarithmic Bound for Solving Subset Sum with P Systems , 2007, Workshop on Membrane Computing.
[3] Mario J. Pérez-Jiménez,et al. Membrane Dissolution and Division in P , 2009, UC.
[4] Mario J. Pérez-Jiménez,et al. Complexity classes in models of cellular computing with membranes , 2003, Natural Computing.
[5] Niall Murphy,et al. A Characterisation of NL Using Membrane Systems without Charges and Dissolution , 2008, UC.
[6] Agustín Riscos-Núñez,et al. Computational efficiency of dissolution rules in membrane systems , 2006, Int. J. Comput. Math..
[7] Giancarlo Mauri,et al. On a Paun's Conjecture in Membrane Systems , 2007, IWINAC.
[8] Niall Murphy,et al. Uniformity conditions in natural computing , 2010 .
[9] Neil Immerman,et al. On Uniformity within NC¹ , 1990, J. Comput. Syst. Sci..
[10] Gheorghe Paun. P Systems with Active Membranes: Attacking NP-Complete Problems , 2001, J. Autom. Lang. Comb..
[11] Alfonso Rodríguez-Patón,et al. Membrane computing and complexity theory: A characterization of PSPACE , 2007, J. Comput. Syst. Sci..
[12] Artiom Alhazov,et al. Uniform Solution to QSAT Using Polarizationless Active Membranes , 2006 .
[13] Alberto Leporati,et al. On a Powerful Class of Non-universal P Systems with Active Membranes , 2010, Developments in Language Theory.
[14] Artiom Alhazov,et al. Uniform Solution of , 2007, MCU.
[15] Larry J. Stockmeyer,et al. The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..