Numerical Approximation of the Singularly Perturbed Heat Equation in a Circle

In this article we study the two dimensional singularly perturbed heat equation in a circular domain. The aim is to develop a numerical method with a uniform mesh, avoiding mesh refinement at the boundary thanks to the use of a relatively simple representation of the boundary layer. We provide the asymptotic expansion of the solution at first order and derive the boundary layer element resulting from the boundary layer analysis. We then perform the convergence analysis introducing the boundary layer element in the finite element space thus obtaining what is called an “enriched Galerkin space”. Finally we present and comment on numerical simulations using a quasi-uniform grid and the modified finite element method.

[1]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[2]  Zorica Uzelac,et al.  The Sdfem for a Convection-diffusion Problem with Two Small Parameters , 2003 .

[3]  A. Jeffrey THE ONE-DIMENSIONAL HEAT EQUATION: (Encyclopedia of Mathematics and Its Applications, 23) , 1985 .

[4]  Niall Madden ANALYSIS OF AN ALTERNATING DIRECTION METHOD APPLIED TO SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEMS , 2010 .

[5]  S. Savescu,et al.  Pointwise error estimates for a singularly perturbed time-dependent semilinear reaction–diffusion problem , 2011 .

[6]  Roger Temam,et al.  On the numerical approximations of stiff convection–diffusion equations in a circle , 2014, Numerische Mathematik.

[7]  Roger Temam,et al.  Numerical approximation of one-dimensional stationary diffusion equations with boundary layers , 2002 .

[8]  Jean-Pierre Aubin,et al.  Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods , 1967 .

[9]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[10]  Carmelo Clavero,et al.  A high order uniformly convergent alternating direction scheme for time dependent reaction–diffusion singularly perturbed problems , 2007, Numerische Mathematik.

[11]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[12]  Youngjoon Hong,et al.  Singularly perturbed reaction–diffusion equations in a circle with numerical applications , 2013, Int. J. Comput. Math..

[13]  Shagi-Di Shih,et al.  Asymptotic anaylsis of a singular perturbation problem , 1987 .

[14]  R. Temam Navier-Stokes Equations , 1977 .

[15]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[16]  Roger Temam,et al.  Asymptotic analysis of the linearized Navier-Stokes equations in a channel , 1995, Differential and Integral Equations.

[17]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[18]  Felix E. Browder,et al.  The One-Dimensional Heat Equation: Preface , 1984 .

[19]  J. Nitsche,et al.  Lineare spline-funktionen und die methoden von ritz für elliptische randwertprobleme , 1970 .

[20]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[21]  R. Temam,et al.  Asymptotic analysis of the Stokes problem on general bounded domains: the case of a characteristic boundary , 2010 .

[22]  Roger Temam,et al.  Boundary layers in smooth curvilinear domains: Parabolic problems , 2009 .

[23]  R. Temam,et al.  Singular perturbation analysis of time dependent convection–diffusion equations in a circle , 2015 .

[24]  R. Temam,et al.  SINGULAR PERTURBATION ANALYSIS ON A HOMOGENEOUS OCEAN CIRCULATION MODEL , 2011 .

[25]  Carmelo Clavero,et al.  A high order HODIE finite difference scheme for 1D parabolic singularly perturbed reaction-diffusion problems , 2012, Appl. Math. Comput..

[26]  Roger Temam,et al.  Finite volume approximation of stiff problems on two-dimensional curvilinear domain , 2016, Int. J. Comput. Math..

[27]  Roger Temam,et al.  Asymptotic analysis of the linearized Navier-Stokes equations in a general 2D domain , 1997 .

[28]  Roger Temam,et al.  Boundary layer theory for convection-diffusion equations in a circle , 2014 .

[29]  Roger Temam,et al.  On Parabolic Boundary Layers for Convection–Diffusion Equations in a Channel: Analysis and Numerical Applications , 2006, J. Sci. Comput..

[30]  Chang-Yeol Jung,et al.  Finite elements scheme in enriched subspaces for singularly perturbed reaction-diffusion problems on a square domain , 2008, Asymptot. Anal..

[31]  Roger Temam,et al.  New Approximation Algorithms for a Class of Partial Differential Equations Displayinging Boundary Layer Behavior , 2000 .

[32]  Martin Stynes,et al.  Steady-state convection-diffusion problems , 2005, Acta Numerica.

[33]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[35]  Lutz Tobiska,et al.  The SDFEM for a Convection-Diffusion Problem with a Boundary Layer: Optimal Error Analysis and Enhancement of Accuracy , 2003, SIAM J. Numer. Anal..

[36]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .