Numerical Approximation of the Singularly Perturbed Heat Equation in a Circle
暂无分享,去创建一个
[1] Claes Johnson. Numerical solution of partial differential equations by the finite element method , 1988 .
[2] Zorica Uzelac,et al. The Sdfem for a Convection-diffusion Problem with Two Small Parameters , 2003 .
[3] A. Jeffrey. THE ONE-DIMENSIONAL HEAT EQUATION: (Encyclopedia of Mathematics and Its Applications, 23) , 1985 .
[4] Niall Madden. ANALYSIS OF AN ALTERNATING DIRECTION METHOD APPLIED TO SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEMS , 2010 .
[5] S. Savescu,et al. Pointwise error estimates for a singularly perturbed time-dependent semilinear reaction–diffusion problem , 2011 .
[6] Roger Temam,et al. On the numerical approximations of stiff convection–diffusion equations in a circle , 2014, Numerische Mathematik.
[7] Roger Temam,et al. Numerical approximation of one-dimensional stationary diffusion equations with boundary layers , 2002 .
[8] Jean-Pierre Aubin,et al. Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods , 1967 .
[9] M. Stynes,et al. Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .
[10] Carmelo Clavero,et al. A high order uniformly convergent alternating direction scheme for time dependent reaction–diffusion singularly perturbed problems , 2007, Numerische Mathematik.
[11] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .
[12] Youngjoon Hong,et al. Singularly perturbed reaction–diffusion equations in a circle with numerical applications , 2013, Int. J. Comput. Math..
[13] Shagi-Di Shih,et al. Asymptotic anaylsis of a singular perturbation problem , 1987 .
[14] R. Temam. Navier-Stokes Equations , 1977 .
[15] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[16] Roger Temam,et al. Asymptotic analysis of the linearized Navier-Stokes equations in a channel , 1995, Differential and Integral Equations.
[17] Sophia Blau,et al. Analysis Of The Finite Element Method , 2016 .
[18] Felix E. Browder,et al. The One-Dimensional Heat Equation: Preface , 1984 .
[19] J. Nitsche,et al. Lineare spline-funktionen und die methoden von ritz für elliptische randwertprobleme , 1970 .
[20] Lutz Tobiska,et al. Numerical Methods for Singularly Perturbed Differential Equations , 1996 .
[21] R. Temam,et al. Asymptotic analysis of the Stokes problem on general bounded domains: the case of a characteristic boundary , 2010 .
[22] Roger Temam,et al. Boundary layers in smooth curvilinear domains: Parabolic problems , 2009 .
[23] R. Temam,et al. Singular perturbation analysis of time dependent convection–diffusion equations in a circle , 2015 .
[24] R. Temam,et al. SINGULAR PERTURBATION ANALYSIS ON A HOMOGENEOUS OCEAN CIRCULATION MODEL , 2011 .
[25] Carmelo Clavero,et al. A high order HODIE finite difference scheme for 1D parabolic singularly perturbed reaction-diffusion problems , 2012, Appl. Math. Comput..
[26] Roger Temam,et al. Finite volume approximation of stiff problems on two-dimensional curvilinear domain , 2016, Int. J. Comput. Math..
[27] Roger Temam,et al. Asymptotic analysis of the linearized Navier-Stokes equations in a general 2D domain , 1997 .
[28] Roger Temam,et al. Boundary layer theory for convection-diffusion equations in a circle , 2014 .
[29] Roger Temam,et al. On Parabolic Boundary Layers for Convection–Diffusion Equations in a Channel: Analysis and Numerical Applications , 2006, J. Sci. Comput..
[30] Chang-Yeol Jung,et al. Finite elements scheme in enriched subspaces for singularly perturbed reaction-diffusion problems on a square domain , 2008, Asymptot. Anal..
[31] Roger Temam,et al. New Approximation Algorithms for a Class of Partial Differential Equations Displayinging Boundary Layer Behavior , 2000 .
[32] Martin Stynes,et al. Steady-state convection-diffusion problems , 2005, Acta Numerica.
[33] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[35] Lutz Tobiska,et al. The SDFEM for a Convection-Diffusion Problem with a Boundary Layer: Optimal Error Analysis and Enhancement of Accuracy , 2003, SIAM J. Numer. Anal..
[36] A. Chorin. Numerical Solution of the Navier-Stokes Equations* , 1989 .