A survey on enhanced subspace clustering

[1]  Arthur Zimek,et al.  When pattern met subspace cluster a relationship story , 2011 .

[2]  Hans-Peter Kriegel,et al.  Density Based Subspace Clustering over Dynamic Data , 2011, SSDBM.

[3]  Bernhard Schölkopf,et al.  Multi-way set enumeration in weight tensors , 2011, Machine Learning.

[4]  Thomas Seidl,et al.  Subspace Clustering Meets Dense Subgraph Mining: A Synthesis of Two Paradigms , 2010, 2010 IEEE International Conference on Data Mining.

[5]  Kelvin Sim,et al.  Discovering Correlated Subspace Clusters in 3D Continuous-Valued Data , 2010, 2010 IEEE International Conference on Data Mining.

[6]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[7]  Hans-Peter Kriegel,et al.  Can Shared-Neighbor Distances Defeat the Curse of Dimensionality? , 2010, SSDBM.

[8]  Thomas Seidl,et al.  Subspace Clustering for Uncertain Data , 2010, SDM.

[9]  Qiang Fu,et al.  Bayesian Overlapping Subspace Clustering , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[10]  Ira Assent,et al.  Relevant Subspace Clustering: Mining the Most Interesting Non-redundant Concepts in High Dimensional Data , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[11]  Jinyan Li,et al.  Efficient mining of distance‐based subspace clusters , 2009, Stat. Anal. Data Min..

[12]  Hans-Peter Kriegel,et al.  Subspace and projected clustering: experimental evaluation and analysis , 2009, Knowledge and Information Systems.

[13]  Emmanuel Müller,et al.  Detection of orthogonal concepts in subspaces of high dimensional data , 2009, CIKM.

[14]  Jinyan Li,et al.  Mining maximal quasi‐bicliques: Novel algorithm and applications in the stock market and protein networks , 2009, Stat. Anal. Data Min..

[15]  Guimei Liu,et al.  Prequential analysis of complex data with adaptive model reselection , 2009 .

[16]  See-Kiong Ng,et al.  MACs: Multi-Attribute Co-clusters with High Correlation Information , 2009, ECML/PKDD.

[17]  Ira Assent,et al.  Evaluating Clustering in Subspace Projections of High Dimensional Data , 2009, Proc. VLDB Endow..

[18]  Ira Assent,et al.  HSM: Heterogeneous Subspace Mining in High Dimensional Data , 2009, SSDBM.

[19]  Céline Robardet,et al.  Constraint-Based Subspace Clustering , 2009, SDM.

[20]  K. Tan,et al.  Finding Time-Lagged 3D Clusters , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[21]  Hans-Peter Kriegel,et al.  Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering , 2009, TKDD.

[22]  Jean-François Boulicaut,et al.  Closed patterns meet n-ary relations , 2009, TKDD.

[23]  Ira Assent,et al.  INSCY: Indexing Subspace Clusters with In-Process-Removal of Redundancy , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[24]  Ira Assent,et al.  EDSC: efficient density-based subspace clustering , 2008, CIKM '08.

[25]  Jörg Sander,et al.  Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering , 2008, KDD.

[26]  Ira Assent,et al.  Morpheus: interactive exploration of subspace clustering , 2008, KDD.

[27]  Qiang Yang,et al.  Self-taught clustering , 2008, ICML '08.

[28]  Jinyan Li,et al.  Maximal Quasi-Bicliques with Balanced Noise Tolerance: Concepts and Co-clustering Applications , 2008, SDM.

[29]  Jean-François Boulicaut,et al.  Data Peeler: Contraint-Based Closed Pattern Mining in n-ary Relations , 2008, SDM.

[30]  Ruggero G. Pensa,et al.  Constrained Co-clustering of Gene Expression Data , 2008, SDM.

[31]  Yannis Manolopoulos,et al.  Continuous subspace clustering in streaming time series , 2008, Inf. Syst..

[32]  Qi Zhang,et al.  Incremental Subspace Clustering over Multiple Data Streams , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[33]  Ira Assent,et al.  DUSC: Dimensionality Unbiased Subspace Clustering , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[34]  Philip S. Yu,et al.  GraphScope: parameter-free mining of large time-evolving graphs , 2007, KDD '07.

[35]  Michael K. Ng,et al.  An Entropy Weighting k-Means Algorithm for Subspace Clustering of High-Dimensional Sparse Data , 2007, IEEE Transactions on Knowledge and Data Engineering.

[36]  Hans-Peter Kriegel,et al.  Future trends in data mining , 2007, Data Mining and Knowledge Discovery.

[37]  Christos Faloutsos,et al.  On data mining, compression, and Kolmogorov complexity , 2007, Data Mining and Knowledge Discovery.

[38]  Xiang Zhang,et al.  An Efficient Algorithm for Mining Coherent Patterns from Heterogeneous Microarrays , 2007, 19th International Conference on Scientific and Statistical Database Management (SSDBM 2007).

[39]  Michel Verleysen,et al.  The Concentration of Fractional Distances , 2007, IEEE Transactions on Knowledge and Data Engineering.

[40]  Elke Achtert,et al.  Detection and Visualization of Subspace Cluster Hierarchies , 2007, DASFAA.

[41]  Jinyan Li,et al.  Mining Maximal Quasi-Bicliques to Co-Cluster Stocks and Financial Ratios for Value Investment , 2006, Sixth International Conference on Data Mining (ICDM'06).

[42]  Andreas Hotho,et al.  TRIAS--An Algorithm for Mining Iceberg Tri-Lattices , 2006, Sixth International Conference on Data Mining (ICDM'06).

[43]  Farshad Fotouhi,et al.  Co-clustering Documents and Words Using Bipartite Isoperimetric Graph Partitioning , 2006, Sixth International Conference on Data Mining (ICDM'06).

[44]  Tie-Yan Liu,et al.  Star-Structured High-Order Heterogeneous Data Co-clustering Based on Consistent Information Theory , 2006, Sixth International Conference on Data Mining (ICDM'06).

[45]  Elke Achtert,et al.  Finding Hierarchies of Subspace Clusters , 2006, PKDD.

[46]  Jinyan Li,et al.  Efficient Mining of Large Maximal Bicliques , 2006, DaWaK.

[47]  Luigi Pontieri,et al.  An Information-Theoretic Framework for Process Structure and Data Mining , 2006, Int. J. Data Warehous. Min..

[48]  Anthony K. H. Tung,et al.  Mining frequent closed cubes in 3D datasets , 2006, VLDB.

[49]  A. Zimek,et al.  Deriving quantitative models for correlation clusters , 2006, KDD '06.

[50]  Wilfred Ng,et al.  Mining quantitative correlated patterns using an information-theoretic approach , 2006, KDD '06.

[51]  Marina Meila,et al.  Comparing subspace clusterings , 2006, IEEE Transactions on Knowledge and Data Engineering.

[52]  Anthony K. H. Tung,et al.  Mining Shifting-and-Scaling Co-Regulation Patterns on Gene Expression Profiles , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[53]  Hans-Peter Kriegel,et al.  A generic framework for efficient subspace clustering of high-dimensional data , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[54]  Jinyan Li,et al.  A Correspondence Between Maximal Complete Bipartite Subgraphs and Closed Patterns , 2005, PKDD.

[55]  Ira Assent,et al.  CLICKS: an effective algorithm for mining subspace clusters in categorical datasets , 2005, KDD '05.

[56]  Mohammed J. Zaki,et al.  TRICLUSTER: an effective algorithm for mining coherent clusters in 3D microarray data , 2005, SIGMOD '05.

[57]  J. G. Burleigh,et al.  Identifying optimal incomplete phylogenetic data sets from sequence databases. , 2005, Molecular phylogenetics and evolution.

[58]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[59]  Aidong Zhang,et al.  Cluster analysis for gene expression data: a survey , 2004, IEEE Transactions on Knowledge and Data Engineering.

[60]  Mohammed J. Zaki,et al.  SCHISM: a new approach for interesting subspace mining , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[61]  Philip S. Yu,et al.  A Framework for Projected Clustering of High Dimensional Data Streams , 2004, VLDB.

[62]  Jian Pei,et al.  Mining coherent gene clusters from gene-sample-time microarray data , 2004, KDD.

[63]  Eamonn J. Keogh,et al.  Towards parameter-free data mining , 2004, KDD.

[64]  Akira Tanaka,et al.  The Worst-Case Time Complexity for Generating All Maximal Cliques , 2004, COCOON.

[65]  Tao Li,et al.  Document clustering via adaptive subspace iteration , 2004, SIGIR '04.

[66]  Dana Ron,et al.  A New Conceptual Clustering Framework , 2004, Machine Learning.

[67]  Christian Böhm,et al.  Computing Clusters of Correlation Connected objects , 2004, SIGMOD '04.

[68]  Huan Liu,et al.  Subspace clustering for high dimensional data: a review , 2004, SKDD.

[69]  Ming-Syan Chen,et al.  Subspace Clustering of High Dimensional Spatial Data with Noises , 2004, PAKDD.

[70]  Michael K. Ng,et al.  An optimization algorithm for clustering using weighted dissimilarity measures , 2004, Pattern Recognit..

[71]  Hans-Peter Kriegel,et al.  Ranking Interesting Subspaces for Clustering High Dimensional Data , 2003, PKDD.

[72]  Inderjit S. Dhillon,et al.  Information-theoretic co-clustering , 2003, KDD '03.

[73]  Huan Liu,et al.  Feature selection for clustering - a filter solution , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[74]  Chris H. Q. Ding,et al.  Adaptive dimension reduction for clustering high dimensional data , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[75]  Philip S. Yu,et al.  /spl delta/-clusters: capturing subspace correlation in a large data set , 2002, Proceedings 18th International Conference on Data Engineering.

[76]  Philip S. Yu,et al.  Clustering by pattern similarity in large data sets , 2002, SIGMOD '02.

[77]  Inderjit S. Dhillon,et al.  Co-clustering documents and words using bipartite spectral graph partitioning , 2001, KDD '01.

[78]  Leo Breiman,et al.  Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) , 2001 .

[79]  Claire Cardie,et al.  Proceedings of the Eighteenth International Conference on Machine Learning, 2001, p. 577–584. Constrained K-means Clustering with Background Knowledge , 2022 .

[80]  Charu C. Aggarwal,et al.  On the Surprising Behavior of Distance Metrics in High Dimensional Spaces , 2001, ICDT.

[81]  D. Keim,et al.  What Is the Nearest Neighbor in High Dimensional Spaces? , 2000, VLDB.

[82]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[83]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[84]  Yi Zhang,et al.  Entropy-based subspace clustering for mining numerical data , 1999, KDD '99.

[85]  Kristin P. Bennett,et al.  Density-based indexing for approximate nearest-neighbor queries , 1999, KDD '99.

[86]  Philip S. Yu,et al.  Fast algorithms for projected clustering , 1999, SIGMOD '99.

[87]  Sudipto Guha,et al.  ROCK: a robust clustering algorithm for categorical attributes , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[88]  Nicolas Pasquier,et al.  Discovering Frequent Closed Itemsets for Association Rules , 1999, ICDT.

[89]  Jonathan Goldstein,et al.  When Is ''Nearest Neighbor'' Meaningful? , 1999, ICDT.

[90]  Jon M. Kleinberg,et al.  A Microeconomic View of Data Mining , 1998, Data Mining and Knowledge Discovery.

[91]  Dimitrios Gunopulos,et al.  Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.

[92]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[93]  AgrawalRakesh,et al.  Mining quantitative association rules in large relational tables , 1996 .

[94]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[95]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[96]  Ron Rymon,et al.  Search through Systematic Set Enumeration , 1992, KR.

[97]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[98]  G. W. Snedecor STATISTICAL METHODS , 1967 .

[99]  Jinyan Li,et al.  A case study on financial ratios via cross-graph quasi-bicliques , 2011, Inf. Sci..

[100]  W. M. Wan,et al.  The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD , 2011 .

[101]  Kelvin Sim,et al.  Mining Actionable Subspace Clusters in Sequential Data , 2010, SDM.

[102]  T. Seidl,et al.  ASCLU : Alternative Subspace Clustering , 2010 .

[103]  A. Zimek,et al.  On Using Class-Labels in Evaluation of Clusterings , 2010 .

[104]  A. Zimek,et al.  Subspace Clustering, Ensemble Clustering, Alternative Clustering, Multiview Clustering: What Can We Learn From Each Other? , 2010 .

[105]  Eamonn J. Keogh Nearest Neighbor , 2010, Encyclopedia of Machine Learning.

[106]  Ira Assent,et al.  DensEst: Density Estimation for Data Mining in High Dimensional Spaces , 2009, SDM.

[107]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[108]  Hans-Peter Kriegel,et al.  Density-Connected Subspace Clustering for High-Dimensional Data , 2004, SDM.

[109]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[110]  Hiroki Arimura,et al.  LCM ver. 2: Efficient Mining Algorithms for Frequent/Closed/Maximal Itemsets , 2004, FIMI.

[111]  Dimitrios Gunopulos,et al.  Subspace Clustering of High Dimensional Data , 2004, SDM.

[112]  Leo Breiman,et al.  Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) , 2001, Statistical Science.

[113]  Alok N. Choudhary,et al.  Adaptive Grids for Clustering Massive Data Sets , 2001, SDM.

[114]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[115]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[116]  David G. Stork,et al.  Pattern Classification , 1973 .