Three Phase Induction Motor's Stator Turns Fault Analysis Based on Artificial Intelligence

Thisarticlepresentsamethodforfaultdetectionanddiagnosisofstatorinter-turnshortcircuitin threephaseinductionmachines.Thetechniqueisbasedonmodellingthemotorinthedqframefor bothhealthandfaultcasestofacilitaterecognitionofmotorcurrent.UsinganAdaptiveNeuro-Fuzzy Inference System (ANFIS) to provide an efficient fault diagnosis tool. An artificial intelligence networkdeterminesthefaultseverityvaluesusingthestatorcurrenthistory.Theperformanceof thedevelopedfaultanalysismethodisinvestigatedusingMatlab/Simulink®software.Statorturns faultsaredetectedthroughcurrentmonitoringofa2Hpthreephaseinductionmotorundervarious loadingconditions.Faulthistoryiscalculatedundervariousloadingconditions,andawiderange offaultseverity. KeywoRDS ANFIS, dq Modelling, Fault Detection, Fault Diagnosis, Fault Resistance, Induction Motor, Inter-Turn Fault, Neuro-Fuzzy, Turn-To-Turn Stator Fault

[1]  Nazmul Siddique,et al.  Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing , 2013 .

[2]  Mohamed A. Moustafa Hassan,et al.  An Artificial Intelligence Based Approach for High Impedance Faults Analysis in Distribution Networks , 2012, Int. J. Syst. Dyn. Appl..

[3]  Ahmad Taher Azar,et al.  Handbook of Research on Advanced Intelligent Control Engineering and Automation , 2015 .

[4]  Mohamed A. Moustafa Hassan,et al.  Speed sensorless field-oriented control of a six-phase saturated model of induction motors drive with online stator resistance estimation using ANFIS , 2012, Int. J. Model. Identif. Control..

[5]  Steven X. Ding,et al.  A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches , 2015, IEEE Transactions on Industrial Electronics.

[6]  Ahmad Taher,et al.  Adaptive Neuro-Fuzzy Systems , 2010 .

[7]  Muslum Arkan,et al.  Modelling and simulation of induction motors with inter-turn faults for diagnostics , 2005 .

[8]  Mehrdad Ehsani,et al.  A General Approach for Current-Based Condition Monitoring of Induction Motors , 2014 .

[9]  Mohamed A. Moustafa Hassan,et al.  Applications of ANFIS in Loss of Excitation Faults Detection in Hydro-Generators , 2016, Int. J. Syst. Dyn. Appl..

[10]  Duygu Bayram,et al.  Anfis model for vibration signals based on aging process in electric motors , 2015, Soft Comput..

[11]  Mohamed A. Moustafa Hassan,et al.  Parameter Identification Using ANFIS for Magnetically Saturated Induction Motor , 2012, Int. J. Syst. Dyn. Appl..

[12]  Sundarapandian Vaidyanathan,et al.  Computational Intelligence Applications in Modeling and Control , 2015, Computational Intelligence Applications in Modeling and Control.

[13]  Jianshe Kang,et al.  Research on Fault Diagnosis Method Using Improved Multi-Class Classification Algorithm and Relevance Vector Machine , 2015, Int. J. Inf. Technol. Web Eng..

[14]  Walmir M. Caminhas,et al.  Fault detection in dynamic systems by a Fuzzy/Bayesian network formulation , 2014, Appl. Soft Comput..

[15]  Cheng-Hung Chen,et al.  Neural fuzzy inference systems with knowledge-based cultural differential evolution for nonlinear system control , 2014, Inf. Sci..

[16]  Seng-Chi Chen,et al.  Adaptive Network-Based Fuzzy Inference System (ANFIS) Controller for an Active Magnetic Bearing System with Unbalance Mass , 2014 .

[17]  Mohamed A. Moustafa Hassan,et al.  Advanced distance protection technique based on multiple classified ANFIS considering different loading conditions for long transmission lines in EPS , 2012, Int. J. Model. Identif. Control..

[18]  Sundarapandian Vaidyanathan,et al.  Advances in Chaos Theory and Intelligent Control , 2016, Advances in Chaos Theory and Intelligent Control.

[19]  Toshiji Kato,et al.  Diagnosis of Stator‐Winding‐Turn Faults of Induction Motor by Direct Detection of Negative Sequence Currents , 2011 .

[20]  Nazmul Siddique,et al.  Neuro-Fuzzy Control , 2014 .

[21]  A. Iqbal,et al.  Detection, diagnoses and discrimination of stator turn to turn fault and unbalanced supply voltage fault for three phase induction motors , 2012, 2012 IEEE International Conference on Power and Energy (PECon).

[22]  Quanmin Zhu,et al.  Complex System Modelling and Control Through Intelligent Soft Computations , 2016, Studies in Fuzziness and Soft Computing.

[23]  Sundarapandian Vaidyanathan,et al.  Chaos Modeling and Control Systems Design , 2014, Chaos Modeling and Control Systems Design.

[24]  Constantin V. Negoita,et al.  On Fuzzy Systems , 1978 .

[25]  M Ramadan Sayed,et al.  Power System Quality Improvement Using Flexible AC Transmission Systems Based on Adaptive Neuro-Fuzzy Inference System , 2013 .

[26]  Wen Li,et al.  Modularized fault diagnosis model of induction motor based on radial basis function neural network , 2015 .

[27]  Thomas Gustafsson,et al.  Faults Classification Scheme for Three Phase Induction Motor , 2014, Int. J. Syst. Dyn. Appl..

[28]  M. Abzari,et al.  Designing a Stock Trading System Using Artificial Nero Fuzzy Inference Systems and Technical Analysis Approach , 2014 .

[29]  Anna Philo Antony,et al.  Simulation of Performance of a Cage InductionMotor Driven Spooler Drive with Speed andCurrent Feedback using Field-Oriented Control , 2014 .

[30]  D. B. Talange,et al.  Fault Tolerant Control of an AUV using Periodic Output Feedback with Multi Model Approach , 2016, Int. J. Syst. Dyn. Appl..

[31]  Omar Jasim,et al.  An extended induction motor model for investigation of faulted machines and fault tolerant variable speed drives , 2010 .

[32]  Djamel Boukhetala,et al.  Sliding Modes for Fault Tolerant Control , 2015, Advances and Applications in Sliding Mode Control Systems.

[33]  Ke Zhang,et al.  Fault diagnosis of nonlinear and large-scale processes using novel modified kernel Fisher discriminant analysis approach , 2016, Int. J. Syst. Sci..