Accurate statistical associating fluid theory for chain molecules formed from Mie segments.

A highly accurate equation of state (EOS) for chain molecules formed from spherical segments interacting through Mie potentials (i.e., a generalized Lennard-Jones form with variable repulsive and attractive exponents) is presented. The quality of the theoretical description of the vapour-liquid equilibria (coexistence densities and vapour pressures) and the second-derivative thermophysical properties (heat capacities, isobaric thermal expansivities, and speed of sound) are critically assessed by comparison with molecular simulation and with experimental data of representative real substances. Our new EOS represents a notable improvement with respect to previous versions of the statistical associating fluid theory for variable range interactions (SAFT-VR) of the generic Mie form. The approach makes rigorous use of the Barker and Henderson high-temperature perturbation expansion up to third order in the free energy of the monomer Mie system. The radial distribution function of the reference monomer fluid, which is a prerequisite for the representation of the properties of the fluid of Mie chains within a Wertheim first-order thermodynamic perturbation theory (TPT1), is calculated from a second-order expansion. The resulting SAFT-VR Mie EOS can now be applied to molecular fluids characterized by a broad range of interactions spanning from soft to very repulsive and short-ranged Mie potentials. A good representation of the corresponding molecular-simulation data is achieved for model monomer and chain fluids. When applied to the particular case of the ubiquitous Lennard-Jones potential, our rigorous description of the thermodynamic properties is of equivalent quality to that obtained with the empirical EOSs for LJ monomer (EOS of Johnson et al.) and LJ chain (soft-SAFT) fluids. A key feature of our reformulated SAFT-VR approach is the greatly enhanced accuracy in the near-critical region for chain molecules. This attribute, combined with the accurate modeling of second-derivative properties, allows for a much improved global representation of the thermodynamic properties and fluid-phase equilibria of pure fluids and their mixtures.

[1]  G. Iglesias-Silva,et al.  Primitive model of water , 1989 .

[2]  Hisashi Okumura,et al.  Liquid–vapor coexistence curves of several interatomic model potentials , 2000 .

[3]  M. M. Piñeiro,et al.  A comprehensive description of chemical association effects on second derivative properties of alcohols through a SAFT-VR approach. , 2007, The journal of physical chemistry. B.

[4]  J. Pablo,et al.  Simulation and prediction of vapour-liquid equilibria for chain molecules , 1996 .

[5]  Sugata P. Tan,et al.  Recent Advances and Applications of Statistical Associating Fluid Theory , 2008 .

[6]  Stanley I. Sandler,et al.  Equation of state for the Lennard–Jones fluid based on the perturbation theory , 2008 .

[7]  R. Buckingham,et al.  The Classical Equation of State of Gaseous Helium, Neon and Argon , 1938 .

[8]  Janet E. Jones On the Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature , 1924 .

[9]  G. Jackson,et al.  An analytical equation of state for chain molecules formed from Yukawa segments , 1999 .

[10]  A. Galindo,et al.  The phase diagram of the two center Lennard-Jones model as obtained from computer simulation and Wertheim's thermodynamic perturbation theory , 2003 .

[11]  S. Sandler,et al.  Equation of state for the square-well chain fluid based on the dimer version of Wertheim's perturbation theory , 1995 .

[12]  George Jackson,et al.  SAFT: Equation-of-state solution model for associating fluids , 1989 .

[13]  J. Barker,et al.  Perturbation Theory and Equation of State for Fluids. II. A Successful Theory of Liquids , 1967 .

[14]  Stanley H. Huang,et al.  Equation of state for small, large, polydisperse, and associating molecules , 1990 .

[15]  A. Malijevský,et al.  Optimized equation of the state of the square-well fluid of variable range based on a fourth-order free-energy expansion. , 2009, The Journal of chemical physics.

[16]  T. Kihara Virial Coefficients and Models of Molecules in Gases , 1953 .

[17]  William A. Wakeham,et al.  Intermolecular Forces: Their Origin and Determination , 1983 .

[18]  J. Fulton,et al.  Fourier transform infrared spectroscopy of molecular interactions of heptafluoro-1-butanol or 1-butanol in supercritical carbon dioxide and supercritical ethane , 1992 .

[19]  Yiping Tang,et al.  First‐order radial distribution functions based on the mean spherical approximation for square‐well, Lennard‐Jones, and Kihara fluids , 1994 .

[20]  Joachim Gross,et al.  Modeling Polymer Systems Using the Perturbed-Chain Statistical Associating Fluid Theory Equation of State , 2002 .

[21]  A. Galindo,et al.  Prediction of binary intermolecular potential parameters for use in modelling fluid mixtures , 2008 .

[22]  B. Widom,et al.  Book Review:The Critical Point. A Historical Introduction to the Modern Theory of Critical Phenomena. Cyril Domb, Taylor and Francis, London, 1996 , 1998 .

[23]  T. Boublík Background correlation functions in the hard sphere systems , 1986 .

[24]  Yiping Tang,et al.  An analytical analysis of the square‐well fluid behaviors , 1994 .

[25]  Bingjian Zhang Calculating thermodynamic properties from perturbation theory: I. An analytic representation of square-well potential hard-sphere perturbation theory , 1999 .

[26]  Rafiqul Gani,et al.  Are safe results obtained when the PC-SAFT equation of state is applied to ordinary pure chemicals? , 2010 .

[27]  K. Gubbins,et al.  An Equation of State for Water from a Simplified Intermolecular Potential , 1995 .

[28]  Yiping Tang,et al.  A study of associating Lennard–Jones chains by a new reference radial distribution function , 2000 .

[29]  A. Galindo,et al.  Recent advances in the use of the SAFT approach in describing electrolytes, interfaces, liquid crystals and polymers , 2001 .

[30]  Lourdes F. Vega,et al.  Prediction of Binary and Ternary Diagrams Using the Statistical Associating Fluid Theory (SAFT) Equation of State , 1998 .

[31]  George Jackson,et al.  New reference equation of state for associating liquids , 1990 .

[32]  George Jackson,et al.  Phase equilibria of associating fluids , 2006 .

[33]  John S. Rowlinson,et al.  Liquids and liquid mixtures , 1959 .

[34]  Tomáš Boublı́k,et al.  Hard‐Sphere Equation of State , 1970 .

[35]  L. Girifalco Molecular properties of fullerene in the gas and solid phases , 1992 .

[36]  J. S. Rowlinson,et al.  The Yukawa potential , 1989 .

[37]  K. Gubbins,et al.  Phase equilibria calculations with a modified SAFT equation of state. 1. Pure alkanes, alkanols, and water , 1996 .

[38]  A. Fisher,et al.  The Theory of Critical Phenomena: An Introduction to the Renormalization Group , 1992 .

[39]  Amparo Galindo Lowri A. Davies Alej The thermodynamics of mixtures and the corresponding mixing rules in the SAFT-VR approach for potentials of variable range , 1998 .

[40]  G. Jackson,et al.  Describing the Properties of Chains of Segments Interacting Via Soft-Core Potentials of Variable Range with the SAFT-VR Approach , 1998 .

[41]  J. C. Slater The Normal State of Helium , 1928 .

[42]  K. Gubbins,et al.  Equation of State for Lennard-Jones Chains , 1994 .

[43]  W. Sutherland LII. The viscosity of gases and molecular force , 1893 .

[44]  R. Buckingham,et al.  Tables of second virial and low-pressure Joule-Thomson coefficients for intermolecular potentials with exponential repulsion , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[45]  D. Ben‐Amotz,et al.  Hard sphere perturbation theory for fluids with soft-repulsive-core potentials. , 2004, The Journal of chemical physics.

[46]  K. Gubbins,et al.  Theory and simulation of associating fluids: Lennard-Jones chains with association sites , 1994 .

[47]  G. Soave Equilibrium constants from a modified Redlich-Kwong equation of state , 1972 .

[48]  F. Tisserand,et al.  Traité de mécanique céleste , 1889 .

[49]  M. Wertheim,et al.  Thermodynamic perturbation theory of polymerization , 1987 .

[50]  Kurt Binder,et al.  Artificial multiple criticality and phase equilibria: an investigation of the PC-SAFT approach. , 2005, Physical chemistry chemical physics : PCCP.

[51]  B. Sage,et al.  Phase Equilibria in Hydrocarbon Systems. Volumetric and Phase Behavior of the n-Decane-CO2 System. , 1963 .

[52]  E. Grüneisen,et al.  Theorie des festen Zustandes einatomiger Elemente , 1912 .

[53]  F. J. Blas,et al.  Surface tension of fully flexible Lennard-Jones chains: role of long-range corrections. , 2009, The Journal of chemical physics.

[54]  K. Gubbins,et al.  12 Associating fluids and fluid mixtures , 2000 .

[55]  E. A. Müller,et al.  Molecular simulation and theory of associating chain molecules , 1995 .

[56]  J. Sengers,et al.  11 Critical Region , 2000 .

[57]  G. Maitland,et al.  Generalized equation of state for square-well potentials of variable range , 2005 .

[58]  M. Wertheim,et al.  Fluids with highly directional attractive forces. I. Statistical thermodynamics , 1984 .

[59]  A global investigation of phase equilibria using the perturbed-chain statistical-associating-fluid-theory approach. , 2005, The Journal of chemical physics.

[60]  G. Kontogeorgis,et al.  Evaluation of the PC-SAFT, SAFT and CPA equations of state in predicting derivative properties of selected non-polar and hydrogen-bonding compounds , 2013 .

[61]  Athanassios Z. Panagiotopoulos,et al.  Monte Carlo calculation of phase equilibria for a bead-spring polymeric model , 1994 .

[62]  M. Hodak,et al.  Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential , 2000 .

[63]  Shiqi Zhou How to make thermodynamic perturbation theory to be suitable for low temperature? , 2009, The Journal of chemical physics.

[64]  Henry Margenau,et al.  The Role of Quadrupole Forces in Van Der Waals Attractions , 1931 .

[65]  George Jackson,et al.  SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide. , 2011, The journal of physical chemistry. B.

[66]  J. Pablo,et al.  Comment on the accuracy of Wertheim’s theory of associating fluids , 1995 .

[67]  F. London,et al.  Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften , 1930 .

[68]  T. Young III. An essay on the cohesion of fluids , 1805, Philosophical Transactions of the Royal Society of London.

[69]  John C. Slater,et al.  The Van Der Waals Forces in Gases , 1931 .

[70]  A. Malijevský,et al.  The bridge function for hard spheres , 1987 .

[71]  T. Lafitte,et al.  Thermodynamic properties of the Mie n-6 fluid: a comparison between statistical associating fluid theory of variable range approach and molecular dynamics results. , 2007, The Journal of chemical physics.

[72]  George Jackson,et al.  Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. , 2014, The Journal of chemical physics.

[73]  K. D. Luks,et al.  Solubility of ethane in n-decane at pressures to 8.2 MPa and temperatures from 278 to 411 K , 1986 .

[74]  John A. Zollweg,et al.  The Lennard-Jones equation of state revisited , 1993 .

[75]  M. Wertheim,et al.  Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations , 1984 .

[76]  J. A. Barker,et al.  Approximate Evaluation of the Second‐Order Term in the Perturbation Theory of Fluids , 1970 .

[77]  C. Adjiman,et al.  SAFT-γ force field for the simulation of molecular fluids: 2. Coarse-grained models of greenhouse gases, refrigerants, and long alkanes. , 2013, The journal of physical chemistry. B.

[78]  Walter G Chapman,et al.  Prediction of the properties of model polymer solutions and blends , 1994 .

[79]  I. Nezbeda,et al.  Augmented van der Waals equations of state: SAFT-VR versus Yukawa based van der Waals equation , 2011 .

[80]  Y. Duda,et al.  Some universal trends of the Mie(n,m) fluid thermodynamics , 2008, 0810.3904.

[81]  J. Rowlinson Cohesion: Subject index , 2002 .

[82]  A. Galindo,et al.  Predicting the High-Pressure Phase Equilibria of Binary Mixtures of Perfluoro-n-alkanes + n-Alkanes Using the SAFT-VR Approach , 1998 .

[83]  George Jackson,et al.  A group contribution method for associating chain molecules based on the statistical associating fluid theory (SAFT-gamma). , 2007, The Journal of chemical physics.

[84]  L. Girifalco Interaction potential for carbon (C60) molecules , 1991 .

[85]  R. Clausius,et al.  XI. On the nature of the motion which we call heat , 1857 .

[86]  Walter G Chapman,et al.  A new equation of state for hard chain molecules , 1994 .

[87]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[88]  Erich A. Müller,et al.  Molecular-Based Equations of State for Associating Fluids: A Review of SAFT and Related Approaches , 2001 .

[89]  M. Wertheim Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres , 1986 .

[90]  S. Sandler,et al.  An equation of state for the hard-sphere chain fluid: theory and Monte Carlo simulation , 1994 .

[91]  Georgios M. Kontogeorgis,et al.  Thermodynamic Models for Industrial Applications , 2010 .

[92]  C. Adjiman,et al.  SAFT-γ force field for the simulation of molecular fluids: 3. Coarse-grained models of benzene and hetero-group models of n-decylbenzene , 2012 .

[93]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[94]  Ioannis G. Economou,et al.  Statistical Associating Fluid Theory: A Successful Model for the Calculation of Thermodynamic and Phase Equilibrium Properties of Complex Fluid Mixtures , 2002 .

[95]  K. Gubbins,et al.  Phase equilibria for associating Lennard-Jones fluids from theory and simulation , 1992 .

[96]  Lloyd L. Lee,et al.  Molecular Thermodynamics of Nonideal Fluids , 1988 .

[97]  P. Paricaud A general perturbation approach for equation of state development: applications to simple fluids, ab initio potentials, and fullerenes. , 2006, The Journal of chemical physics.

[98]  George Jackson,et al.  Statistical associating fluid theory for chain molecules with attractive potentials of variable range , 1997 .

[99]  C. Domb,et al.  The Critical Point: A Historical Introduction To The Modern Theory Of Critical Phenomena , 1996 .

[100]  Henry Margenau,et al.  Van der waals forces , 1939 .

[101]  Ivo Nezbeda,et al.  The Lennard-Jones fluid: an accurate analytic and theoretically-based equation of state , 1994 .

[102]  M. M. Piñeiro,et al.  Simultaneous estimation of phase behavior and second-derivative properties using the statistical associating fluid theory with variable range approach. , 2006, The Journal of chemical physics.

[103]  Henry Margenau,et al.  Theory of intermolecular forces , 1969 .

[104]  A new simple analytic equation of state for square-well chain fluids with variable width, 1.1 < λ < 2, based on perturbation theory and an analytic representation of the hard-sphere radial distribution function gHS(r) , 2010 .

[105]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[106]  G. Mie Zur kinetischen Theorie der einatomigen Körper , 1903 .

[107]  Clare McCabe,et al.  Chapter 8:SAFT Associating Fluids and Fluid Mixtures , 2010 .

[108]  James Clerk Maxwell,et al.  IV. On the dynamical theory of gases , 1868, Philosophical Transactions of the Royal Society of London.

[109]  George Jackson,et al.  Study of the demixing transition in model athermal mixtures of colloids and flexible self-excluding polymers using the thermodynamic perturbation theory of Wertheim , 2003 .

[110]  Walter G Chapman Prediction of the thermodynamic properties of associating Lennard‐Jones fluids: Theory and simulation , 1990 .

[111]  L. Vega,et al.  Improved vapor–liquid equilibria predictions for Lennard-Jones chains from the statistical associating fluid dimer theory: Comparison with Monte Carlo simulations , 2001 .

[112]  M. Radosz,et al.  Prototype of an Engineering Equation of State for Heterosegmented Polymers , 1998 .

[113]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[114]  Claire S. Adjiman,et al.  A generalisation of the SAFT-γ group contribution method for groups comprising multiple spherical segments , 2008 .

[115]  M. Wertheim,et al.  Fluids with highly directional attractive forces. IV. Equilibrium polymerization , 1986 .

[116]  K. Gubbins,et al.  Phase equilibria of associating fluids : spherical molecules with multiple bonding sites , 1988 .

[117]  Constantinos C. Pantelides,et al.  Efficient Solution of the Association Term Equations in the Statistical Associating Fluid Theory Equation of State , 2006 .

[118]  M. Wertheim,et al.  Fluids with highly directional attractive forces. III. Multiple attraction sites , 1986 .

[119]  K. E. Starling,et al.  Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres , 1971 .

[120]  Jadran Vrabec,et al.  Vapour liquid equilibria of the Lennard-Jones fluid from the NpT plus test particle method , 1992 .

[121]  Janet E. Jones On the determination of molecular fields. —II. From the equation of state of a gas , 1924 .

[122]  J. Barker,et al.  What is "liquid"? Understanding the states of matter , 1976 .

[123]  J. Potoff,et al.  Mie potentials for phase equilibria calculations: application to alkanes and perfluoroalkanes. , 2009, The journal of physical chemistry. B.

[124]  Honglai Liu,et al.  A new development of equation of state for square-well chain-like molecules with variable width 1.1 ≤ λ ≤ 3 , 2009 .

[125]  Yiping Tang,et al.  A new solution of the Ornstein–Zernike equation from the perturbation theory , 1993 .

[126]  M. Fisher Renormalization group theory: Its basis and formulation in statistical physics , 1998 .

[127]  J. Pablo,et al.  Bond‐bias simulation of phase equilibria for strongly associating fluids , 1994 .