Componentwise classification and clustering of functional data

The infinite dimension of functional data can challenge conventional methods for classification and clustering. A variety of techniques have been introduced to address this problem, particularly in the case of prediction, but the structural models that they involve can be too inaccurate, or too abstract, or too difficult to interpret, for practitioners. In this paper, we develop approaches to adaptively choose components, enabling classification and clustering to be reduced to finite-dimensional problems. We explore and discuss properties of these methodologies. Our techniques involve methods for estimating classifier error rate and cluster tightness, and for choosing both the number of components, and their locations, to optimize these quantities. A major attraction of this approach is that it allows identification of parts of the function domain that convey important information for classification and clustering. It also permits us to determine regions that are relevant to one of these analyses but not the other. Copyright 2012, Oxford University Press.

[1]  Irene Epifanio,et al.  Shape Descriptors for Classification of Functional Data , 2008, Technometrics.

[2]  P. Hall,et al.  Achieving near perfect classification for functional data , 2012 .

[3]  Fabrice Rossi,et al.  Support Vector Machine For Functional Data Classification , 2006, ESANN.

[4]  Ho-Jin Lee,et al.  Optimal classification for time-course gene expression data using functional data analysis , 2008, Comput. Biol. Chem..

[5]  P. Hall,et al.  Defining probability density for a distribution of random functions , 2010, 1002.4931.

[6]  Frédéric Ferraty,et al.  Additive prediction and boosting for functional data , 2009, Comput. Stat. Data Anal..

[7]  Hyejin Shin An extension of Fisher's discriminant analysis for stochastic processes , 2008 .

[8]  José A. Vilar,et al.  Discriminant and cluster analysis for Gaussian stationary processes: local linear fitting approach , 2004 .

[9]  Ana M. Aguilera,et al.  Functional PLS logit regression model , 2007, Comput. Stat. Data Anal..

[10]  Frédéric Ferraty,et al.  Curves discrimination: a nonparametric functional approach , 2003, Comput. Stat. Data Anal..

[11]  Gareth M. James,et al.  Functional linear discriminant analysis for irregularly sampled curves , 2001 .

[12]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[13]  Jie Peng,et al.  Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions , 2008, 0805.0463.

[14]  Peter Hall,et al.  A Functional Data—Analytic Approach to Signal Discrimination , 2001, Technometrics.

[15]  Hans-Georg Müller,et al.  Classification using functional data analysis for temporal gene expression data , 2006, Bioinform..

[16]  Frédéric Ferraty,et al.  Most-predictive design points for functional data predictors , 2010 .

[17]  P. Hall,et al.  On properties of functional principal components analysis , 2006 .

[18]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[19]  Bani K. Mallick,et al.  Bayesian Curve Classification Using Wavelets , 2007 .

[20]  Magalie Fromont,et al.  Functional Classification with Margin Conditions , 2006, COLT.

[21]  H. Shang A survey of functional principal component analysis , 2014 .

[22]  Ricardo Fraiman,et al.  Robust estimation and classification for functional data via projection-based depth notions , 2007, Comput. Stat..

[23]  Catherine A. Sugar,et al.  Clustering for Sparsely Sampled Functional Data , 2003 .

[24]  Richard H. Glendinning,et al.  Shape classification using smooth principal components , 2003, Pattern Recognit. Lett..

[25]  Juan Romo,et al.  Depth-based classification for functional data , 2005, Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications.

[26]  Gilbert Saporta,et al.  PLS classification of functional data , 2005, Comput. Stat..

[27]  Allou Samé,et al.  A hidden process regression model for functional data description. Application to curve discrimination , 2010, Neurocomputing.

[28]  De-Shuang Huang,et al.  Independent component analysis-based penalized discriminant method for tumor classification using gene expression data , 2006, Bioinform..

[29]  Yuko Araki,et al.  Functional Logistic Discrimination Via Regularized Basis Expansions , 2009 .

[30]  Jeng-Min Chiou,et al.  Functional clustering and identifying substructures of longitudinal data , 2007 .

[31]  Florentina Bunea,et al.  Functional classification in Hilbert spaces , 2005, IEEE Transactions on Information Theory.