On chip weighted random patterns

This paper describes the design details, operation, cost, and performance of a distributed weighted pattern test approach at the chip level. The traditional LSSD SRLs are being replaced by WRP SRLs designed specifically to facilitate a weighted random pattern (WRP) test. A two-bit code is transmitted to each WRP SRL to determine its specific weight. The WRP test is then divided into groups, where each group is activated with a different set of weights. The weights are dynamically adjusted during the course of the test to "go after" the remaining untested faults. The cost and performance of this design system are explored on three pilot chips. Results of this experiment are provided in the paper.

[1]  Janusz Rajski,et al.  Constructive multi-phase test point insertion for scan-based BIST , 1996, Proceedings International Test Conference 1996. Test and Design Validity.

[2]  Jacob Savir,et al.  On Random Pattern Test Length , 1984, IEEE Transactions on Computers.

[3]  Rohit Kapur,et al.  Design of an efficient weighted random pattern generation system , 1994, Proceedings., International Test Conference.

[4]  Irith Pomeranz,et al.  COMPACTEST: a method to generate compact test sets for combinational circuits , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[5]  John A. Waicukauski,et al.  Fault detection effectiveness of weighted random patterns , 1988, International Test Conference 1988 Proceeding@m_New Frontiers in Testing.

[6]  J. Savir Improved cutting algorithm , 1990 .

[7]  Heinrich Meyr,et al.  Test point insertion for an area efficient BIST , 1995, Proceedings of 1995 IEEE International Test Conference (ITC).

[8]  Pete Wilson,et al.  Overview of PowerPC 620 multiprocessor verification strategy , 1995, Proceedings of 1995 IEEE International Test Conference (ITC).

[9]  Hans-Joachim Wunderlich,et al.  Self test using unequiprobable random patterns , 1987 .

[10]  Fidel Muradali,et al.  A structure and technique for pseudorandom-based testing of sequential circuits , 1995, J. Electron. Test..

[11]  Thomas W. Williams,et al.  A logic design structure for LSI testability , 1977, DAC '77.

[12]  Jacob Savir Module Level Weighted Random Patterns , 1997, J. Electron. Test..

[13]  Irith Pomeranz,et al.  3-weight Pseudo-random Test Generation Based on a Deterministic Test Set for Combinational and Sequential Circuits , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  Miguel Corbalan,et al.  Generation of optimized single distributions of weights for random built-in self-test , 1993, Proceedings of IEEE International Test Conference - (ITC).

[15]  Eric Lindbloom,et al.  Random-Pattern Coverage Enhancement and Diagnosis for LSSD Logic Self-Test , 1983, IBM J. Res. Dev..

[16]  Charles R. Kime,et al.  Fixed-biased pseudorandom built-in self-test for random pattern resistant circuits , 1994, Proceedings., International Test Conference.

[17]  G. Kemnitz,et al.  How To Do Weighted Random Testing For Bist? , 1993, Proceedings of 1993 International Conference on Computer Aided Design (ICCAD).

[18]  Eric Lindbloom,et al.  The Weighted Random Test-Pattern Generator , 1975, IEEE Transactions on Computers.

[19]  Benoit Nadeau-Dostie,et al.  A new procedure for weighted random built-in self-test , 1990, Proceedings. International Test Conference 1990.

[20]  Hans-Joachim Wunderlich,et al.  Multiple distributions for biased random test patterns , 1988, International Test Conference 1988 Proceeding@m_New Frontiers in Testing.

[21]  Michael Bershteyn Calculation of multiple sets of weights for weighted random testing , 1993, Proceedings of IEEE International Test Conference - (ITC).

[22]  Charles R. Kime,et al.  Inhomogeneous cellular automata for weighted random pattern generation , 1993, Proceedings of IEEE International Test Conference - (ITC).

[23]  Jacob Savir,et al.  Built In Test for VLSI: Pseudorandom Techniques , 1987 .

[24]  Hans-Joachim Wunderlich PROTEST: A Tool for Probabilistic Testability Analysis , 1985, DAC 1985.

[25]  Gary S. Ditlow,et al.  Random Pattern Testability , 1984, IEEE Transactions on Computers.