A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a-posteriori error estimate

SummaryWe extend the applicability of stable mixed finite elements for linear plane elasticity, such as PEERS, to a mixed variational formulation of hyperelasticity. The present approach is based on the introduction of the strain tensor as a further unknown, which yields a two-fold saddle point nonlinear operator equation for the corresponding weak formulation. We provide the uniqueness of solution for the continuous and discrete schemes, and derive the usual Cea estimate for the associated error. Finally, a reliable a-posteriori error estimate, based on the solution of local Dirichlet problems, and well suited for adaptive computations, is also given.

[1]  Eun-Jae Park,et al.  A mixed finite element method for a strongly nonlinear second-order elliptic problem , 1995 .

[2]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[3]  Eun-Jae Park,et al.  Mixed finite-element methods for Hamilton-Jacobi-Bellman-type equations , 1996 .

[4]  Carsten Carstensen,et al.  Coupling of mixed finite elements and boundary elements , 2000 .

[5]  Dietrich Braess,et al.  A Posteriori Error Estimators for the Raviart--Thomas Element , 1996 .

[6]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[7]  G. Gatica Solvability and Galerkin Approximations of a Class of Nonlinear Operator Equations , 2002 .

[8]  Gabriel N. Gatica,et al.  Coupling of Mixed Finite Elements and Boundary Elements for A Hyperelastic Interface Problem , 1997 .

[9]  Abimael F. D. Loula,et al.  A new mixed finite element method for the Timoshenko beam problem , 1991 .

[10]  Norbert Heuer,et al.  A Dual-Dual Formulation for the Coupling of Mixed-FEM and BEM in Hyperelasticity , 2000, SIAM J. Numer. Anal..

[11]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[12]  Zhangxin Chen EXPANDED MIXED FINITE ELEMENT METHODS FOR QUASILINEAR SECOND ORDER ELLIPTIC PROBLEMS, It (*) , 1994 .

[13]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[14]  E. Stephan,et al.  Implicit residual error estimators for the coupling of finite elements and boundary elements , 1999 .

[15]  Norbert Heuer,et al.  Conjugate gradient method for dual-dual mixed formulations , 2002, Math. Comput..

[16]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[17]  Salim Meddahi,et al.  A dual-dual mixed formulation for nonlinear exterior transmission problems , 2001, Math. Comput..

[18]  Norbert Heuer,et al.  An expanded mixed finite element approach via a dual-dual formulation and the minimum residual method , 2001 .

[19]  R. Araya,et al.  A boundary-field equation method for a nonlinear exterior elasticity problem in the plane , 1996 .

[20]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[21]  Jindřich Nečas,et al.  Introduction to the Theory of Nonlinear Elliptic Equations , 1986 .

[22]  Norbert Heuer,et al.  Minimum residual iteration for a dual-dual mixed formulation of exterior transmission problems , 2001, Numer. Linear Algebra Appl..

[23]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[24]  Luis F. Gatica,et al.  A FEM–DtN formulation for a non‐linear exterior problem in incompressible elasticity , 2003 .

[25]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[26]  Abdellatif Agouzal,et al.  Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes , 1998, Numerische Mathematik.

[27]  D. Arnold Mixed finite element methods for elliptic problems , 1990 .

[28]  E. Stephan,et al.  Adaptive coupling of boundary elements and mixed finite elements for incompressible elasticity , 2001 .

[29]  J. Tinsley Oden,et al.  A Posteriori Error Estimators for the Stokes and Oseen Equations , 1997 .

[30]  W. Wendland,et al.  Coupling of mixed finite elements and boundary elements for linear and nonlinear elliptic problems , 1996 .

[31]  Erwin Stein,et al.  A posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems , 1998 .

[32]  A. Alonso Error estimators for a mixed method , 1996 .

[33]  Miyoung Lee,et al.  Mixed Finite Element Methods for Nonlinear Elliptic Problems: The p-Version , 1996 .

[34]  Zhangxin Chen,et al.  Expanded mixed finite element methods for linear second-order elliptic problems, I , 1998 .

[35]  Eun-Jae Park,et al.  Mixed finite element methods for nonlinear second-order elliptic problems , 1995 .

[36]  I. Hlavácek,et al.  Mathematical Theory of Elastic and Elasto Plastic Bodies: An Introduction , 1981 .

[37]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..

[38]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[39]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[40]  F. Milner,et al.  Some observations on mixed methods for fully nonlinear parabolic problems in divergence form , 1996 .