First principles investigation of the Co(0001)/MoS2 and Ni(111)/WSe2 interfaces for spin injection in a transition metal dichalcogenide monolayer

The hexagonal close-packed (hcp) Co(0001)/MoS2 and face-centered cubic (fcc) Ni(111)/WSe2 interface atomic, magnetic and electronic structures are investigated using first-principles methods based on the density functional theory. We show that the MoS2 and WSe2 single layers are covalently bond to the Co(0001) and Ni(111) metal surfaces. We describe the consequences of this bonding on the spin magnetic moments and on the electron states at the vicinity of these interfaces, where MoS2 and WSe2 become metallic due to hybridization between Co (or Ni) and S (or Se) atomic orbitals. A finite spin-polarization at the Fermi level is calculated in the MoS2 and WSe2 layers at these two interfaces. We also give and estimation of the Schottky barrier height that may appear at the border between the metallic and semiconducting phases of MoS2 (or WSe2) near the edge of a Co/MoS2 or Ni/WSe2 metallic contact.

[1]  S. Sanvito,et al.  Efficient spin injection and giant magnetoresistance in Fe / MoS 2 / Fe junctions , 2014, 1404.3517.

[2]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[3]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[4]  Paolo Ruggerone,et al.  Computational Materials Science X , 2002 .

[5]  Kaustav Banerjee,et al.  Electrical contacts to two-dimensional semiconductors. , 2015, Nature materials.

[6]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[7]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[8]  Aubrey T. Hanbicki,et al.  Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor , 2002 .

[9]  C. W. J. Beenakker,et al.  Valley filter and valley valve in graphene , 2007 .

[10]  E. Kaxiras,et al.  Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates. , 2013, Nano letters.

[11]  X. Marie,et al.  Electronic structure of the Co(0001)/MoS2 interface, and its possible use for electrical spin injection in a single MoS2 layer , 2017, 1803.10612.

[12]  Baohe Yang,et al.  First principles prediction on the interfaces of Fe/MoS2, Co/MoS2 and Fe3O4/MoS2 , 2015 .

[13]  Oriol López Sánchez,et al.  Valley Polarization by Spin Injection in a Light-Emitting van der Waals Heterojunction , 2016, Nano letters.

[14]  Jinlan Wang,et al.  Uniformly wetting deposition of Co atoms on MoS(2) monolayer: a promising two-dimensional robust half-metallic ferromagnet. , 2014, ACS applied materials & interfaces.

[15]  Yida Li,et al.  Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes. , 2015, ACS nano.

[16]  Andrew G. Glen,et al.  APPL , 2001 .

[17]  R. Fiederling,et al.  Injection and detection of a spin-polarized current in a light-emitting diode , 1999, Nature.

[18]  Xiang Zhang,et al.  Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. , 2016, Nature nanotechnology.

[19]  Kaustav Banerjee,et al.  Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors , 2014 .

[20]  P. Tan,et al.  Robust optical emission polarization in MoS2 monolayers through selective valley excitation , 2012, 1206.5128.

[21]  R M Macfarlane,et al.  Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100). , 2005, Physical review letters.

[22]  John P. Perdew,et al.  Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation , 1999 .