Laplace‐domain, high‐order homogenization for transient dynamic response of viscoelastic composites

Summary This paper presents a high-order homogenization model for wave propagation in viscoelastic composite structures. Asymptotic expansions with multiple spatial scales are employed to formulate the homogenization model. The proposed multiscale model operates in the Laplace domain allowing the representation of linear viscoelastic constitutive relationship using a proportionality law. The high-order terms in the asymptotic expansion of response fields are included to reproduce micro-heterogeneity-induced wave dispersion and formation of bandgaps. The first and second-order influence functions and the macroscopic deformation are evaluated using the finite element method with complex coefficients in the Laplace domain. The performance of the proposed model is assessed by investigating wave propagation characteristics in layered and particulate composites and verified against direct numerical simulations and analytical solutions. The analysis of dissipated energy revealed that material dispersion may contribute significantly to wave attenuation in dissipative composite materials. The wave dispersion characteristics are shown to be sensitive to microstructure morphology. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  Bahram Djafari-Rouhani,et al.  Complete acoustic band gaps in periodic fibre reinforced composite materials : the carbon/epoxy composite and some metallic systems , 1994 .

[2]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[3]  A. Cemal Eringen,et al.  NONLINEAR THEORY OF SIMPLE MICRO-ELASTIC SOLIDS-I , 1964 .

[4]  Julien Yvonnet,et al.  A simple computational homogenization method for structures made of linear heterogeneous viscoelastic materials , 2011 .

[5]  T. Hughes,et al.  ISOGEOMETRIC DISCRETIZATIONS IN STRUCTURAL DYNAMICS AND WAVE PROPAGATION , 2007 .

[6]  Tong Hui,et al.  A high order homogenization model for transient dynamics of heterogeneous media including micro-inertia effects , 2014 .

[7]  D. Turhan,et al.  Propagation of transient out-of-plane shear waves in viscoelastic layered media , 2001 .

[8]  P. Yu,et al.  Complex elastic wave band structures in three-dimensional periodic elastic media , 1998 .

[9]  T. Ito,et al.  金属系のフォトニックバンド II 表面プラズモンポラリトンの特徴 , 2001 .

[10]  Claude Boutin,et al.  Microstructural effects in elastic composites , 1996 .

[11]  J. Engelbrecht,et al.  Waves in microstructured materials and dispersion , 2005 .

[12]  Dieter Weichert,et al.  Higher order asymptotic homogenization and wave propagation in periodic composite materials , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  P. Yu,et al.  Tunneling in photonic band structures , 1995 .

[14]  Leung,et al.  Photonic band structure: The face-centered-cubic case employing nonspherical atoms. , 1991, Physical review letters.

[15]  E. Yablonovitch,et al.  Photonic band structure : non-spherical atoms in the face-centered-cubic case , 1991 .

[16]  V. Prakash,et al.  Structure of weak shock waves in 2-D layered material systems , 2005 .

[17]  Lizhi Lin,et al.  A pencil-like magnetoelectric sensor exhibiting ultrahigh coupling properties , 2013 .

[18]  P. Deymier,et al.  Elastic and viscoelastic effects in rubber/air acoustic band gap structures: A theoretical and experimental study , 2008 .

[19]  Marc G. D. Geers,et al.  Transient computational homogenization for heterogeneous materials under dynamic excitation , 2013 .

[20]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[21]  A. Ehrlacher,et al.  Harmonic wave propagation in viscoelastic heterogeneous materials Part I: Dispersion and damping relations , 1994 .

[22]  I. Vardoulakis,et al.  A three‐dimensional C1 finite element for gradient elasticity , 2009 .

[23]  Wing Kam Liu,et al.  Characterization of heterogeneous solids via wave methods in computational microelasticity , 2011 .

[24]  I. Morozov,et al.  Specific heat and angle-resolved photoemission spectroscopy study of the superconducting gaps in LiFeAs , 2011 .

[25]  Claudia Felser,et al.  On the influence of bandstructure on transport properties of magnetic tunnel junctions with Co2Mn1−xFexSi single and multilayer electrode , 2008 .

[26]  Tong Hui,et al.  Computational modeling of polyurea-coated composites subjected to blast loads , 2012 .

[27]  A. Nayfeh Discrete lattice simulation of transient motions in elastic and viscoelastic composites , 1974 .

[28]  J. Ross Macdonald,et al.  Accelerated Convergence, Divergence, Iteration, Extrapolation, and Curve Fitting , 1964 .

[29]  J. Sanahuja Effective behaviour of ageing linear viscoelastic composites: Homogenization approach , 2013 .

[30]  C. Sun,et al.  Modeling micro-inertia in heterogeneous materials under dynamic loading , 2002 .

[31]  T. Ting The effects of dispersion and dissipation on wave propagation in viscoelastic layered composities , 1980 .

[32]  Joo Hwan Oh,et al.  Wave attenuation and dissipation mechanisms in viscoelastic phononic crystals , 2013 .

[33]  A. Cemal Eringen,et al.  Nonlinear theory of micro-elastic solids—II☆ , 1964 .

[34]  M. Sigalas,et al.  Elastic wave band gaps in 3-D periodic polymer matrix composites , 1995 .

[35]  B. Guzina,et al.  A physical perspective of the length scales in gradient elasticity through the prism of wave dispersion , 2013 .

[36]  Y. P. Zhao,et al.  The band gap of 1D viscoelastic phononic crystal , 2009 .

[37]  Fadil Santosa,et al.  A dispersive effective medium for wave propagation in periodic composites , 1991 .

[38]  Tong Hui,et al.  A nonlocal homogenization model for wave dispersion in dissipative composite materials , 2013 .

[39]  Eleftherios N. Economou,et al.  Elastic waves in plates with periodically placed inclusions , 1994 .

[40]  V. Laude,et al.  Material loss influence on the complex band structure and group velocity in phononic crystals , 2011 .