A complex epistatic network limits the mutational reversibility in the influenza hemagglutinin receptor-binding site

[1]  I. Wilson,et al.  A structural explanation for the low effectiveness of the seasonal influenza H3N2 vaccine , 2017, PLoS pathogens.

[2]  I. Wilson,et al.  A Perspective on the Structural and Functional Constraints for Immune Evasion: Insights from Influenza Virus. , 2017, Journal of molecular biology.

[3]  R. Lerner,et al.  Diversity of Functionally Permissive Sequences in the Receptor-Binding Site of Influenza Hemagglutinin. , 2017, Cell host & microbe.

[4]  R. Lerner,et al.  In vitro evolution of an influenza broadly neutralizing antibody is modulated by hemagglutinin receptor specificity , 2017, Nature Communications.

[5]  Ryan McBride,et al.  Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched Human-type Receptors, Conferring Potential for Increased Avidity. , 2017, Cell host & microbe.

[6]  S. Wharton,et al.  Effects of egg-adaptation on receptor-binding and antigenic properties of recent influenza A (H3N2) vaccine viruses , 2016, The Journal of general virology.

[7]  F. Hollfelder,et al.  Reverse evolution leads to genotypic incompatibility despite functional and active site convergence , 2015, eLife.

[8]  S. Hensley,et al.  Identification of Hemagglutinin Residues Responsible for H3N2 Antigenic Drift during the 2014-2015 Influenza Season. , 2015, Cell reports.

[9]  Jessie C. Chang,et al.  Structure and receptor binding preferences of recombinant human A(H3N2) virus hemagglutinins. , 2015, Virology.

[10]  H. Moriyama,et al.  Epistasis Constrains Mutational Pathways of Hemoglobin Adaptation in High-Altitude Pikas , 2014, Molecular biology and evolution.

[11]  マーシャル、クリストファー・パトリック,et al.  The influenza hemagglutinin protein and method thereof , 2014 .

[12]  S. Fields,et al.  Deep mutational scanning: a new style of protein science , 2014, Nature Methods.

[13]  Jesse D Bloom,et al.  The inherent mutational tolerance and antigenic evolvability of influenza hemagglutinin , 2014, bioRxiv.

[14]  S. Nelson,et al.  High-throughput profiling of influenza A virus hemagglutinin gene at single-nucleotide resolution , 2014, Scientific Reports.

[15]  Joshua B. Plotkin,et al.  Contingency and entrenchment in protein evolution under purifying selection , 2014, Proceedings of the National Academy of Sciences.

[16]  Y. Iba,et al.  Receptor mimicry by antibody F045–092 facilitates universal binding to the H3 subtype of influenza virus , 2014, Nature Communications.

[17]  D. Burke,et al.  Substitutions Near the Receptor Binding Site Determine Major Antigenic Change During Influenza Virus Evolution , 2013, Science.

[18]  Hua Yang,et al.  New World Bats Harbor Diverse Influenza A Viruses , 2013, PLoS pathogens.

[19]  J. Plotkin,et al.  Single Hemagglutinin Mutations That Alter both Antigenicity and Receptor Binding Avidity Influence Influenza Virus Antigenic Clustering , 2013, Journal of Virology.

[20]  H. Moriyama,et al.  Epistasis Among Adaptive Mutations in Deer Mouse Hemoglobin , 2013, Science.

[21]  Marc A Suchard,et al.  Stability-mediated epistasis constrains the evolution of an influenza protein , 2013, eLife.

[22]  F. Gao,et al.  Bat-derived influenza hemagglutinin H17 does not bind canonical avian or human receptors and most likely uses a unique entry mechanism. , 2013, Cell reports.

[23]  M. Volz Erik,et al.  A gene genealogy illustrating internode intervals. , 2013 .

[24]  Trevor Bedford,et al.  Viral Phylodynamics , 2013, PLoS Comput. Biol..

[25]  Ryan McBride,et al.  Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities , 2013, Proceedings of the National Academy of Sciences.

[26]  Alan J. Hay,et al.  Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin , 2012, Proceedings of the National Academy of Sciences.

[27]  James E. Crowe,et al.  Influenza Human Monoclonal Antibody 1F1 Interacts with Three Major Antigenic Sites and Residues Mediating Human Receptor Specificity in H1N1 Viruses , 2012, PLoS pathogens.

[28]  John Steel,et al.  Cross-neutralization of influenza A viruses mediated by a single antibody loop , 2012, Nature.

[29]  G. Air,et al.  Immunodominance of Antigenic Site B over Site A of Hemagglutinin of Recent H3N2 Influenza Viruses , 2012, PloS one.

[30]  R. Goldstein,et al.  Amino acid coevolution induces an evolutionary Stokes shift , 2012, Proceedings of the National Academy of Sciences.

[31]  Richard H Scheuermann,et al.  Influenza Research Database: an integrated bioinformatics resource for influenza research and surveillance , 2012, Influenza and other respiratory viruses.

[32]  Samir Bhatt,et al.  The genomic rate of molecular adaptation of the human influenza A virus. , 2011, Molecular biology and evolution.

[33]  Martin H. Koldijk,et al.  A Highly Conserved Neutralizing Epitope on Group 2 Influenza A Viruses , 2011, Science.

[34]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[35]  D. Baker,et al.  Role of conformational sampling in computing mutation‐induced changes in protein structure and stability , 2011, Proteins.

[36]  James Paulson,et al.  Receptor Specificity of Influenza A H3N2 Viruses Isolated in Mammalian Cells and Embryonated Chicken Eggs , 2010, Journal of Virology.

[37]  H. Jin,et al.  The impact of key amino acid substitutions in the hemagglutinin of influenza A (H3N2) viruses on vaccine production and antibody response. , 2010, Vaccine.

[38]  D. Mosier,et al.  Fitness Epistasis and Constraints on Adaptation in a Human Immunodeficiency Virus Type 1 Protein Region , 2010, Genetics.

[39]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[40]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[41]  I. Wilson,et al.  Structure, Receptor Binding, and Antigenicity of Influenza Virus Hemagglutinins from the 1957 H2N2 Pandemic , 2009, Journal of Virology.

[42]  Thanat Chookajorn,et al.  Stepwise acquisition of pyrimethamine resistance in the malaria parasite , 2009, Proceedings of the National Academy of Sciences.

[43]  E. Ortlund,et al.  An epistatic ratchet constrains the direction of glucocorticoid receptor evolution , 2009, Nature.

[44]  Bartek Wilczynski,et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..

[45]  David Baker,et al.  Macromolecular modeling with rosetta. , 2008, Annual review of biochemistry.

[46]  E. Ortlund,et al.  Crystal Structure of an Ancient Protein: Evolution by Conformational Epistasis , 2007, Science.

[47]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[48]  David E. Swayne,et al.  A Two-Amino Acid Change in the Hemagglutinin of the 1918 Influenza Virus Abolishes Transmission , 2007, Science.

[49]  Ian A. Wilson,et al.  Structure and Receptor Specificity of the Hemagglutinin from an H5N1 Influenza Virus , 2006, Science.

[50]  Nigel F. Delaney,et al.  Darwinian Evolution Can Follow Only Very Few Mutational Paths to Fitter Proteins , 2006, Science.

[51]  Hong Jin,et al.  Two residues in the hemagglutinin of A/Fujian/411/02-like influenza viruses are responsible for antigenic drift from A/Panama/2007/99. , 2005, Virology.

[52]  A. Lapedes,et al.  Mapping the Antigenic and Genetic Evolution of Influenza Virus , 2004, Science.

[53]  Nathan A. Baker,et al.  PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations , 2004, Nucleic Acids Res..

[54]  Ian A. Wilson,et al.  Structure of the Uncleaved Human H1 Hemagglutinin from the Extinct 1918 Influenza Virus , 2004, Science.

[55]  Masatoshi Nei,et al.  Origin and evolution of influenza virus hemagglutinin genes. , 2002, Molecular biology and evolution.

[56]  Ya Ha,et al.  H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza subtypes , 2002, The EMBO journal.

[57]  Yoshihiro Kawaoka,et al.  Early Alterations of the Receptor-Binding Properties of H1, H2, and H3 Avian Influenza Virus Hemagglutinins after Their Introduction into Mammals , 2000, Journal of Virology.

[58]  Junmei Wang,et al.  How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? , 2000, J. Comput. Chem..

[59]  Tokiko Watanabe,et al.  Generation of influenza A viruses entirely from cloned cDNAs. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[60]  S. Teneberg,et al.  Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. , 1997, Virology.

[61]  R. Webster,et al.  Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. , 1994, Virology.

[62]  Y Tateno,et al.  Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. , 1991, Virology.

[63]  M. Kimura The role of compensatory neutral mutations in molecular evolution , 1985, Journal of Genetics.

[64]  I. Wilson,et al.  Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation , 1981, Nature.

[65]  I. Wilson,et al.  Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution , 1981, Nature.

[66]  J. Skehel,et al.  Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. , 2000, Annual review of biochemistry.

[67]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[68]  P. Hartman,et al.  Mechanisms of suppression. , 1973, Advances in genetics.