On unsymmetric block overrelaxation-type methods for saddle point problems

The unsymmetric block overrelaxation-type (UBOR-type) method is proposed to attack saddle point problems in this paper. The convergence and the optimal parameters for the method are studied when the iteration parameters satisfy some relationship. Theoretical analyses show that the UBOR-type method has faster asymptotic convergence rate than the SOR-like method and its convergence rate can reach the same as that of the GSOR method at least. Numerical experiments support our theoretical results. Moveover, the numerical results further reveal that the new method can be much more effective than the GSOR method in terms of iteration steps.

[1]  Eric de Sturler,et al.  Block-Diagonal and Constraint Preconditioners for Nonsymmetric Indefinite Linear Systems. Part I: Theory , 2005, SIAM J. Sci. Comput..

[2]  E. Sturler,et al.  Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems , 2006 .

[3]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[4]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[5]  A. Wathen,et al.  Minimum residual methods for augmented systems , 1998 .

[6]  Walter Zulehner,et al.  Analysis of iterative methods for saddle point problems: a unified approach , 2002, Math. Comput..

[7]  Zeng-Qi Wang,et al.  Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems , 2006 .

[8]  Gene H. Golub,et al.  A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..

[9]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[10]  Stephen J. Wright Stability of Augmented System Factorizations in Interior-Point Methods , 1997, SIAM J. Matrix Anal. Appl..

[11]  Michael K. Ng,et al.  New preconditioners for saddle point problems , 2006, Appl. Math. Comput..

[12]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[13]  Beresford N. Parlett,et al.  On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.

[14]  Gene H. Golub,et al.  An Iteration for Indefinite Systems and Its Application to the Navier-Stokes Equations , 1998, SIAM J. Sci. Comput..

[15]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[16]  Gene H. Golub,et al.  Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..

[17]  Gene H. Golub,et al.  SOR-like Methods for Augmented Systems , 2001 .

[18]  Gene H. Golub,et al.  Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .

[19]  Z. Bai,et al.  Restrictively preconditioned conjugate gradient methods for systems of linear equations , 2003 .

[20]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[21]  David J. Evans,et al.  Generalized AOR method for the augmented system , 2004, Int. J. Comput. Math..

[22]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[23]  M SIAMJ. AN ITERATIVE METHOD WITH VARIABLE RELAXATION PARAMETERS FOR SADDLE-POINT PROBLEMS , 2001 .

[24]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .