Segmentation of Microscopic Images with NSGA-II

This paper addresses the problem of multiobjective segmentation on microscopic images by using the evolutionary algorithm NSGA-II. Two objective functions are used at the optimization process: Otsu’s inter-class variance and Shannon’s entropy. A set of 71 images of blood cells are used. From this set, three categories of images are generated: with and without preprocessing, and images with Gaussian noise. Experimental results shown that the use of evolutionary multiobjective techniques like NSGA-II, give satisfactory results in the segmentation for more than one category of images.

[1]  Shubhangi Khobragade,et al.  Detection of leukemia in microscopic white blood cell images , 2015, 2015 International Conference on Information Processing (ICIP).

[2]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[3]  Carlos A. Cattaneo,et al.  Métodos de Umbralización de Imágenes Digitales Basados en Entropía de Shannon y Otros , 2011 .

[4]  Sunil Kumar,et al.  Kernel Induced Rough c-means clustering for lymphocyte image segmentation , 2012, 2012 4th International Conference on Intelligent Human Computer Interaction (IHCI).

[5]  Waidah Ismail,et al.  Image Segmentation Using an Adaptive Clustering Technique for the Detection of Acute Leukemia Blood Cells Images , 2013, 2013 International Conference on Advanced Computer Science Applications and Technologies.

[6]  Hui-Fuang Ng,et al.  Automatic thresholding for defect detection , 2004, Third International Conference on Image and Graphics (ICIG'04).

[7]  Kannan,et al.  ON IMAGE SEGMENTATION TECHNIQUES , 2022 .

[8]  Chun-hung Li,et al.  Minimum cross entropy thresholding , 1993, Pattern Recognit..

[9]  P. Ramírez,et al.  Leucemia mieloide crónica: Actualización en Citogenética y Biología Molecular , 2005 .

[10]  Ansha Beevi An Overview on Acute Lymphocytic Leukemia Detection using Cell Image Segmentation , 2015 .

[11]  Camel Tanougast,et al.  Comparison of segmentation techniques for histopathological images , 2015, 2015 Fifth International Conference on Digital Information and Communication Technology and its Applications (DICTAP).

[12]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[13]  Cecilia Di Ruberto,et al.  White Blood Cells Identication and Classication from Leukemic Blood Image , 2013, IWBBIO.

[14]  A. D. Brink,et al.  Minimum cross-entropy threshold selection , 1996, Pattern Recognit..

[15]  Miss. Madhuri G. Bhamare,et al.  Automatic Blood Cell Analysis by Using Digital Image Processing: A Preliminary Study , 2013 .

[16]  P. Siarry,et al.  Non-supervised image segmentation based on multiobjective optimization , 2008, Pattern Recognit. Lett..

[17]  S. P. Narote,et al.  Blood cell segmentation from microscopic blood images , 2015, 2015 International Conference on Information Processing (ICIP).

[18]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[19]  Sankar K. Pal,et al.  Automatic grey level thresholding through index of fuzziness and entropy , 1983, Pattern Recognit. Lett..

[20]  C. H. Li,et al.  An iterative algorithm for minimum cross entropy thresholding , 1998, Pattern Recognit. Lett..

[21]  Sini Shibu,et al.  Analysis of blood samples for counting leukemia cells using Support vector machine and nearest neighbour , 2014 .

[22]  Mohamed Batouche,et al.  Automatic Multi-Level Thresholding Segmentation Based on Multi-Objective Optimization , 2013 .

[23]  Mandava Rajeswari,et al.  Multiobjective Optimization Approaches in Image Segmentation - The Directions and Challenges , 2010 .

[24]  Amir Nakib,et al.  Image histogram thresholding based on multiobjective optimization , 2007, Signal Process..

[25]  Shyang Chang,et al.  A new criterion for automatic multilevel thresholding , 1995, IEEE Trans. Image Process..

[26]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[27]  J. González-Bernal,et al.  Thresholding of biological images by using evolutionary algorithms , 2015, 2015 Latin America Congress on Computational Intelligence (LA-CCI).

[28]  Nauman Aslam,et al.  An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images , 2015, Scientific Reports.

[29]  Thierry Pun,et al.  Entropic thresholding, a new approach , 1981 .

[30]  Vijay H. Mankar,et al.  Segmentation of Microscopic Images: A Survey , 2014, 2014 International Conference on Electronic Systems, Signal Processing and Computing Technologies.

[31]  Chris A. Glasbey,et al.  An Analysis of Histogram-Based Thresholding Algorithms , 1993, CVGIP Graph. Model. Image Process..

[32]  A. Rosenfeld,et al.  Comments on "An Optimal Multiple Threshold Scheme for Image Segmentation" , 1990 .

[33]  Analysis of leukemia development based on marrow cell images , 2011, 2011 4th International Congress on Image and Signal Processing.

[34]  Enrico Zio,et al.  A COMPARISON OF METHODS FOR SELECTING PREFERRED SOLUTIONS IN MULTIOBJECTIVE DECISION MAKING , 2012 .

[35]  Naruemon Wattanapongsakorn,et al.  Finding Knee Solutions in Multi-Objective Optimization Using Extended Angle Dominance Approach , 2015 .

[36]  Sos S. Agaian,et al.  Automated Screening System for Acute Myelogenous Leukemia Detection in Blood Microscopic Images , 2014, IEEE Systems Journal.

[37]  Subhan,et al.  Significant Analysis of Leukemic Cells Extraction and Detection Using KNN and Hough Transform Algorithm , 2015 .

[38]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[39]  C. Sanchez-Lopez,et al.  Identification of Trypanosoma with digital image processing , 2014, 2014 IEEE Central America and Panama Convention (CONCAPAN XXXIV).

[40]  Thierry Pun,et al.  A new method for grey-level picture thresholding using the entropy of the histogram , 1980 .

[41]  Amir Nakib,et al.  Image thresholding based on Pareto multiobjective optimization , 2010, Eng. Appl. Artif. Intell..

[42]  Ying Sun,et al.  A novel fuzzy entropy approach to image enhancement and thresholding , 1999, Signal Process..

[43]  Prasanna K. Sahoo,et al.  Threshold selection using Renyi's entropy , 1997, Pattern Recognit..

[44]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[45]  Abhijit G. Shanbhag,et al.  Utilization of Information Measure as a Means of Image Thresholding , 1994, CVGIP Graph. Model. Image Process..

[46]  Arturo de la Escalera Hueso Visión por computador: fundamentos y métodos , 2001 .

[47]  L. Jain,et al.  Evolutionary multiobjective optimization : theoretical advances and applications , 2005 .

[48]  Himali P. Vaghela,et al.  Leukemia Detection using Digital Image Processing Techniques , 2015 .

[49]  Preety Singh,et al.  Local Binary Pattern for automatic detection of Acute Lymphoblastic Leukemia , 2014, 2014 Twentieth National Conference on Communications (NCC).

[50]  Amir Nakib,et al.  Multicriteria Image Thresholding Based on Multiobjective Particle Swarm Optimization , 2014 .

[51]  M.Y. Mashor,et al.  Nucleus segmentation technique for acute Leukemia , 2011, 2011 IEEE 7th International Colloquium on Signal Processing and its Applications.

[52]  Banshidhar Majhi,et al.  A survey on automated diagnosis on the detection of Leukemia: A hematological disorder , 2016, 2016 3rd International Conference on Recent Advances in Information Technology (RAIT).

[53]  Josef Kittler,et al.  Minimum error thresholding , 1986, Pattern Recognit..

[54]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  A Strategy  for the Selection of Solutions of the Pareto Front Approximation in Multi-objective Clustering Approaches , 2008, 2008 10th Brazilian Symposium on Neural Networks.

[55]  Himadri Sekhar Dutta,et al.  A New Approach for Segmentation and Identification of Disease Affected Blood Cells , 2014, 2014 International Conference on Intelligent Computing Applications.

[56]  Ujjwal Maulik,et al.  Multiobjective Genetic Clustering with Ensemble Among Pareto Front Solutions: Application to MRI Brain Image Segmentation , 2009, 2009 Seventh International Conference on Advances in Pattern Recognition.

[57]  Chaitali Raje,et al.  Detection of Leukemia in microscopic images using image processing , 2014, 2014 International Conference on Communication and Signal Processing.

[58]  V. Piuri,et al.  Morphological classification of blood leucocytes by microscope images , 2004, 2004 IEEE International Conference onComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA..

[59]  Rocío del Carmen Coronel Morán Importancia del laboratorio en el diagnóstico y pronóstico de leucemia aguda linfoblástica de la infancia , 2005 .

[60]  S Feroz,et al.  A SURVEY ON IMAGE PROCESSING TECHNIQUES , 2016 .