暂无分享,去创建一个
David Gavaghan | Chon Lok Lei | Michael Clerx | Gary R. Mirams | Ben Lambert | Sanmitra Ghosh | Martin Robinson | D. Gavaghan | Sanmitra Ghosh | Ben Lambert | Chon Lok Lei | M. Clerx | M. Robinson
[1] Petros Koumoutsakos,et al. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.
[2] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[3] David Gavaghan,et al. Separating the Effects of Experimental Noise from Inherent System Variability in Voltammetry: The [Fe(CN)6]3-/4- Process. , 2018, Analytical chemistry.
[4] Jiqiang Guo,et al. Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.
[5] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[6] Thomas V. Wiecki,et al. Probabilistic Programming in Python using PyMC , 2015, 1507.08050.
[7] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[8] Erika Cule,et al. ABC-SysBio—approximate Bayesian computation in Python with GPU support , 2010, Bioinform..
[9] David Gavaghan,et al. Integration of Heuristic and Automated Parametrization of Three Unresolved Two-Electron Surface-Confined Polyoxometalate Reduction Processes by AC Voltammetry , 2018, ChemElectroChem.
[10] Riccardo Poli,et al. Particle swarm optimization , 1995, Swarm Intelligence.
[11] Pras Pathmanathan,et al. Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models? , 2016, Journal of molecular and cellular cardiology.
[12] Ajay Jasra,et al. On population-based simulation for static inference , 2007, Stat. Comput..
[13] D. Parkinson,et al. A Nested Sampling Algorithm for Cosmological Model Selection , 2005, astro-ph/0508461.
[14] Pier Luca Lanzi,et al. Proceedings of the 13th annual conference on Genetic and evolutionary computation , 2011, GECCO 2011.
[15] Tom Heskes,et al. BCM: toolkit for Bayesian analysis of Computational Models using samplers , 2016, BMC Systems Biology.
[16] Eric Jones,et al. SciPy: Open Source Scientific Tools for Python , 2001 .
[17] J. Skilling. Nested sampling for general Bayesian computation , 2006 .
[18] Mark A. Girolami,et al. BioBayes: A software package for Bayesian inference in systems biology , 2008, Bioinform..
[19] Cajo J. F. ter Braak,et al. A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..
[20] Thomas A. Henzinger,et al. Probabilistic programming , 2014, FOSE.
[21] D. Higdon,et al. Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .
[22] Tom Schaul,et al. High dimensions and heavy tails for natural evolution strategies , 2011, GECCO '11.
[23] Tom Schaul,et al. Exponential natural evolution strategies , 2010, GECCO '10.
[24] Michael S. Eldred,et al. DAKOTA , A Multilevel Parallel Object-Oriented Framework for Design Optimization , Parameter Estimation , Uncertainty Quantification , and Sensitivity Analysis Version 4 . 0 User ’ s Manual , 2006 .
[25] Geoffrey I. Webb,et al. Encyclopedia of Machine Learning , 2011, Encyclopedia of Machine Learning.
[26] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[27] Rob Johnson,et al. SYSBIONS: nested sampling for systems biology , 2015, Bioinform..
[28] Michael S. Eldred,et al. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .