Asynchronous implicit backward Euler integration
暂无分享,去创建一个
[1] Vincent Hayward,et al. Multirate haptic simulation achieved by coupling finite element meshes through Norton equivalents , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).
[2] Emil M. Constantinescu,et al. On Extrapolated Multirate Methods , 2010 .
[3] Jos T. J. van Eijndhoven,et al. Multirate integration in a direct simulation method , 1990, Proceedings of the European Design Automation Conference, 1990., EDAC..
[4] Alain Combescure,et al. Multi-time-step explicit–implicit method for non-linear structural dynamics , 2001 .
[5] J. Marsden,et al. Variational time integrators , 2004 .
[6] Umut Koçak,et al. Dynamic deformation using adaptable, linked asynchronous FEM regions , 2009, SCCG.
[7] Andrew P. Witkin,et al. Large steps in cloth simulation , 1998, SIGGRAPH.
[8] Jernej Barbic,et al. Vega: Non‐Linear FEM Deformable Object Simulator , 2013, Comput. Graph. Forum.
[9] DOMINIK L. MICHELS,et al. Exponential integrators for stiff elastodynamic problems , 2014, ACM Trans. Graph..
[10] Hujun Bao,et al. Space-time editing of elastic motion through material optimization and reduction , 2014, ACM Trans. Graph..
[11] Markus H. Gross,et al. Interactive Virtual Materials , 2004, Graphics Interface.
[12] Adrian J. Lew,et al. Parallel asynchronous variational integrators , 2007 .
[13] Hyeong-Seok Ko,et al. Modal warping: real-time simulation of large rotational deformation and manipulation , 2004, IEEE Transactions on Visualization and Computer Graphics.
[14] Stig Skelboe,et al. Stability of backward Euler multirate methods and convergence of waveform relaxation , 1992 .
[15] David Harmon,et al. Asynchronous contact mechanics , 2009, SIGGRAPH 2009.
[16] Eitan Grinspun,et al. Implicit-Explicit Variational Integration of Highly Oscillatory Problems , 2008, Multiscale Model. Simul..
[17] Patrick Smolinski,et al. Stability of explicit subcycling time integration with linear interpolation for first-order finite element semidiscretizations , 1998 .
[18] Demetri Terzopoulos,et al. Deformable models , 2000, The Visual Computer.
[19] Burkhard Dünweg,et al. Multiple time step integrators and momentum conservation , 1997 .
[20] William J.T. Daniel,et al. A partial velocity approach to subcycling structural dynamics , 2003 .
[21] Ted Belytschko,et al. Mixed methods for time integration , 1979 .
[22] Mathieu Desbrun,et al. Dynamic real-time deformations using space & time adaptive sampling , 2001, SIGGRAPH.
[23] Kun Zhou,et al. Interactive Shape Interpolation through Controllable Dynamic Deformation , 2011, IEEE Transactions on Visualization and Computer Graphics.
[24] Ted Belytschko,et al. Partitioned and Adaptive Algorithms for Explicit Time Integration , 1981 .
[25] John C. Platt,et al. Elastically deformable models , 1987, SIGGRAPH.
[26] Folco Casadei,et al. Binary spatial partitioning of the central‐difference time integration scheme for explicit fast transient dynamics , 2009 .
[27] Ronald Fedkiw,et al. Asynchronous Evolution for Fully‐Implicit and Semi‐Implicit Time Integration , 2011, Comput. Graph. Forum.
[28] Olaf Schenk,et al. Solving unsymmetric sparse systems of linear equations with PARDISO , 2002, Future Gener. Comput. Syst..
[29] Anthony Gravouil,et al. Heterogeneous asynchronous time integrators for computational structural dynamics , 2015 .
[30] Matthias Harders,et al. Element-wise mixed implicit-explicit integration for stable dynamic simulation of deformable objects , 2011, SCA '11.
[31] O. C. Zienkiewicz,et al. The Finite Element Method: Its Basis and Fundamentals , 2005 .
[32] Wolfgang Straßer,et al. Asynchronous Cloth Simulation , 2008 .
[33] Mathieu Desbrun,et al. Discrete geometric mechanics for variational time integrators , 2006, SIGGRAPH Courses.
[34] Frank Tendick,et al. Multirate simulation for high fidelity haptic interaction with deformable objects in virtual environments , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).