Asynchronous implicit backward Euler integration

In standard deformable object simulation in computer animation, all the mesh elements or vertices are timestepped synchronously, i.e., under the same timestep. Previous asynchronous methods have been largely limited to explicit integration. We demonstrate how to perform spatially-varying timesteps for the widely popular implicit backward Euler integrator. Spatially-varying timesteps are useful when the object exhibits spatially-varying material properties such as Young's modulus or mass density. In synchronous simulation, a region with a high stiffness (or low mass density) will force a small timestep for the entire mesh, at a great computational cost, or else, the motion in the stiff (or low mass density) region will be artificially damped and inaccurate. Our method can assign smaller timesteps to stiffer (or lighter) regions, which makes it possible to properly resolve (sample) the high-frequency deformable dynamics arising from the stiff (or light) materials, resulting in greater accuracy and less artificial damping. Because soft (or heavy) regions can continue using a large timestep, our method provides a significantly higher accuracy under a fixed computational budget.

[1]  Vincent Hayward,et al.  Multirate haptic simulation achieved by coupling finite element meshes through Norton equivalents , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[2]  Emil M. Constantinescu,et al.  On Extrapolated Multirate Methods , 2010 .

[3]  Jos T. J. van Eijndhoven,et al.  Multirate integration in a direct simulation method , 1990, Proceedings of the European Design Automation Conference, 1990., EDAC..

[4]  Alain Combescure,et al.  Multi-time-step explicit–implicit method for non-linear structural dynamics , 2001 .

[5]  J. Marsden,et al.  Variational time integrators , 2004 .

[6]  Umut Koçak,et al.  Dynamic deformation using adaptable, linked asynchronous FEM regions , 2009, SCCG.

[7]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[8]  Jernej Barbic,et al.  Vega: Non‐Linear FEM Deformable Object Simulator , 2013, Comput. Graph. Forum.

[9]  DOMINIK L. MICHELS,et al.  Exponential integrators for stiff elastodynamic problems , 2014, ACM Trans. Graph..

[10]  Hujun Bao,et al.  Space-time editing of elastic motion through material optimization and reduction , 2014, ACM Trans. Graph..

[11]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.

[12]  Adrian J. Lew,et al.  Parallel asynchronous variational integrators , 2007 .

[13]  Hyeong-Seok Ko,et al.  Modal warping: real-time simulation of large rotational deformation and manipulation , 2004, IEEE Transactions on Visualization and Computer Graphics.

[14]  Stig Skelboe,et al.  Stability of backward Euler multirate methods and convergence of waveform relaxation , 1992 .

[15]  David Harmon,et al.  Asynchronous contact mechanics , 2009, SIGGRAPH 2009.

[16]  Eitan Grinspun,et al.  Implicit-Explicit Variational Integration of Highly Oscillatory Problems , 2008, Multiscale Model. Simul..

[17]  Patrick Smolinski,et al.  Stability of explicit subcycling time integration with linear interpolation for first-order finite element semidiscretizations , 1998 .

[18]  Demetri Terzopoulos,et al.  Deformable models , 2000, The Visual Computer.

[19]  Burkhard Dünweg,et al.  Multiple time step integrators and momentum conservation , 1997 .

[20]  William J.T. Daniel,et al.  A partial velocity approach to subcycling structural dynamics , 2003 .

[21]  Ted Belytschko,et al.  Mixed methods for time integration , 1979 .

[22]  Mathieu Desbrun,et al.  Dynamic real-time deformations using space & time adaptive sampling , 2001, SIGGRAPH.

[23]  Kun Zhou,et al.  Interactive Shape Interpolation through Controllable Dynamic Deformation , 2011, IEEE Transactions on Visualization and Computer Graphics.

[24]  Ted Belytschko,et al.  Partitioned and Adaptive Algorithms for Explicit Time Integration , 1981 .

[25]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[26]  Folco Casadei,et al.  Binary spatial partitioning of the central‐difference time integration scheme for explicit fast transient dynamics , 2009 .

[27]  Ronald Fedkiw,et al.  Asynchronous Evolution for Fully‐Implicit and Semi‐Implicit Time Integration , 2011, Comput. Graph. Forum.

[28]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2002, Future Gener. Comput. Syst..

[29]  Anthony Gravouil,et al.  Heterogeneous asynchronous time integrators for computational structural dynamics , 2015 .

[30]  Matthias Harders,et al.  Element-wise mixed implicit-explicit integration for stable dynamic simulation of deformable objects , 2011, SCA '11.

[31]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[32]  Wolfgang Straßer,et al.  Asynchronous Cloth Simulation , 2008 .

[33]  Mathieu Desbrun,et al.  Discrete geometric mechanics for variational time integrators , 2006, SIGGRAPH Courses.

[34]  Frank Tendick,et al.  Multirate simulation for high fidelity haptic interaction with deformable objects in virtual environments , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).