Persuasive Technology

The capability of machines to covertly persuade humans is both exciting and ethically concerning. In the present study we aim to bring subliminal masked stimulus paradigms to realistic environments, through Virtual Environments. The goal is to test if such paradigms are applicable to realistic setups while identifying the major challenges when doing so. We designed a study in which the user performed a realistic selection task in a virtual kitchen. For trials below one-second reaction time, we report significant effect of subliminal cues on the selection behavior. We conclude the study with a discussion of the challenges of bringing subliminal cueing paradigms to realistic HCI setups. Ethical concerns when designing covertly persuasive systems are discussed as well.

[1]  Carlo Strapparava,et al.  NgramQuery - Smart Information Extraction from Google N-gram using External Resources , 2012, LREC.

[2]  Guohua Wu Conceptualizing and Measuring the Perceived Interactivity of Websites , 2006 .

[3]  Carlo Strapparava,et al.  Ecological Evaluation of Persuasive Messages Using Google AdWords , 2012, ACL.

[4]  Mitsuru Ishizuka,et al.  HILDA: A Discourse Parser Using Support Vector Machine Classification , 2010, Dialogue Discourse.

[5]  Boris E. R. de Ruyter,et al.  Adaptive Persuasive Systems: A Study of Tailored Persuasive Text Messages to Reduce Snacking , 2012, TIIS.

[6]  Carlo Strapparava,et al.  Valentino: A Tool for Valence Shifting of Natural Language Texts , 2008, LREC.

[7]  Heeyoung Lee,et al.  Deterministic Coreference Resolution Based on Entity-Centric, Precision-Ranked Rules , 2013, CL.

[8]  Dylan Walker,et al.  Creating Social Contagion Through Viral Product Design: A Randomized Trial of Peer Influence in Networks , 2010, ICIS.

[9]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[10]  Clark Elliott Multi-media Communication with Emotion-driven \believable Agents" , 1994 .

[11]  Michael Mateas,et al.  Generation of Ideologically-Biased Historical Documentaries , 2000, AAAI/IAAI.

[12]  C. Strapparava,et al.  A Computational Approach to the Automation of Creative Naming , 2012, ACL.

[13]  Mark Dras,et al.  Valence Shifting: Is It A Valid Task? , 2012, ALTA.

[14]  J. Vigil,et al.  Urban Violence and Street Gangs , 2003 .

[15]  Tony Veale,et al.  Creative Language Retrieval: A Robust Hybrid of Information Retrieval and Linguistic Creativity , 2011, ACL.

[16]  Christopher D. Manning,et al.  Generating Typed Dependency Parses from Phrase Structure Parses , 2006, LREC.

[17]  Carlo Strapparava,et al.  CORPS: A Corpus of Tagged Political Speeches for Persuasive Communication Processing , 2008 .

[18]  Ielka van der Sluis,et al.  Towards Empirical Evaluation of Affective Tactical NLG , 2009, ENLG.

[19]  Gözde Özbal,et al.  BRAINSUP: Brainstorming Support for Creative Sentence Generation , 2013, ACL.

[20]  Ehud Reiter,et al.  Lessons from a failure: Generating tailored smoking cessation letters , 2003, Artif. Intell..

[21]  Siddharth Suri,et al.  Conducting behavioral research on Amazon’s Mechanical Turk , 2010, Behavior research methods.

[22]  V. Carofiglio Combining Logical with Emotional Reasoning in Natural Argumentation , 2003 .

[23]  Elisabeth André,et al.  Catch me if you can: exploring lying agents in social settings , 2005, AAMAS '05.

[24]  Carlo Strapparava,et al.  Slanting existing text with Valentino , 2011, IUI '11.

[25]  Matteo Negri,et al.  Divide and Conquer: Crowdsourcing the Creation of Cross-Lingual Textual Entailment Corpora , 2011, EMNLP.

[26]  Emanuele Pianta,et al.  The TextPro Tool Suite , 2008, LREC.

[27]  Daniel L. Sherrell,et al.  Source effects in communication and persuasion research: A meta-analysis of effect size , 1993 .

[28]  Christine L. Lisetti,et al.  Emotions and Personality in Agent Design and Modeling , 2001, User Modeling.

[29]  Aart van Halteren,et al.  Adaptive persuasive messaging to increase service retention: using persuasion profiles to increase the effectiveness of email reminders , 2013, Personal and Ubiquitous Computing.

[30]  Floriana Grasso,et al.  Dialectical argumentation to solve conflicts in advice giving: a case study in the promotion of healthy nutrition , 2000, Int. J. Hum. Comput. Stud..

[31]  Andrew Ortony,et al.  The Cognitive Structure of Emotions , 1988 .

[32]  Oliver Christ,et al.  Explaining radical group behavior: Developing emotion and efficacy routes to normative and nonnormative collective action. , 2011, Journal of personality and social psychology.

[33]  Peter D. Turney Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL , 2001, ECML.

[34]  Suresh Manandhar,et al.  Argumentative Human Computer Dialogue for Automated Persuasion , 2008, SIGDIAL Workshop.

[35]  Ann Kronrod,et al.  Weapons of Mass Distraction: Optimal Innovation and Pleasure Ratings , 2004 .

[36]  Floriana Grasso,et al.  Affective Natural Language Generation , 1999, IWAI.

[37]  Marco Guerini,et al.  Sentiment Analysis: How to Derive Prior Polarities from SentiWordNet , 2013, EMNLP.

[38]  Ehud Reiter,et al.  Book Reviews: Building Natural Language Generation Systems , 2000, CL.

[39]  P. Piwek,et al.  An Annotated Bibliography of Affective Natural Language Generation , 2002 .

[40]  Noah A. Smith,et al.  Probabilistic Frame-Semantic Parsing , 2010, NAACL.

[41]  Teun A. van Dijk,et al.  Ideology and discourse analysis , 2005 .

[42]  S. Dumais Latent Semantic Analysis. , 2005 .