Dark soliton and periodic wave solutions of nonlinear evolution equations

[1]  Bin He,et al.  Periodic Loop Solutions and Their Limit Forms for the Kudryashov-Sinelshchikov Equation , 2012 .

[2]  Merle Randrüüt,et al.  On the Kudryashov–Sinelshchikov equation for waves in bubbly liquids , 2011 .

[3]  Abdul-Majid Wazwaz,et al.  A one-soliton solution of the ZK(m,n,k) equation with generalized evolution and time-dependent coefficients , 2011 .

[4]  A. Wazwaz Extended KP equations and extended system of KP equations: multiple-soliton solutions , 2011 .

[5]  Abdul-Majid Wazwaz,et al.  Dark solitons for a combined potential KdV and Schwarzian KdV equations with t-dependent coefficients and forcing term , 2011, Appl. Math. Comput..

[6]  Wenxiu Ma,et al.  Comment on the 3+1 dimensional Kadomtsev–Petviashvili equations , 2011 .

[7]  Nasir Taghizadeh,et al.  The first integral method to some complex nonlinear partial differential equations , 2011, J. Comput. Appl. Math..

[8]  Zhengde Dai,et al.  Exact three-wave solutions for the (3+1)-dimensional Jimbo-Miwa equation , 2011, Comput. Math. Appl..

[9]  A. Biswas,et al.  Bright and dark solitons of the Rosenau-Kawahara equation with power law nonlinearity , 2011 .

[10]  Abdul-Majid Wazwaz,et al.  Soliton solutions for a generalized KdV and BBM equations with time-dependent coefficients , 2011 .

[11]  A. Wazwaz,et al.  Bright and dark solitons for a generalized Korteweg-de Vries–modified Korteweg-de Vries equation with high-order nonlinear terms and time-dependent coefficients , 2011 .

[12]  Anjan Biswas,et al.  Bright and dark optical solitons with time-dependent coefficients in a non-Kerr law media , 2010 .

[13]  Pavel N. Ryabov,et al.  Exact solutions of the Kudryashov-Sinelshchikov equation , 2010, Appl. Math. Comput..

[14]  Wenxiu Ma,et al.  A multiple exp-function method for nonlinear differential equations and its application , 2010, 1010.3324.

[15]  Abdul-Majid Wazwaz,et al.  Bright soliton solution to a generalized Burgers-KdV equation with time-dependent coefficients , 2010, Appl. Math. Comput..

[16]  M. S. Ismail,et al.  Soliton solutions of a BBM(m, n) equation with generalized evolution , 2010, Appl. Math. Comput..

[17]  A. Esfahani On the generalized Kadomtsev–Petviashvili equation with generalized evolution and variable coefficients , 2010 .

[18]  Adem C. Cevikel,et al.  New solitons and periodic solutions for nonlinear physical models in mathematical physics , 2010 .

[19]  Anjan Biswas,et al.  Bright and dark solitons of the generalized nonlinear Schrödinger’s equation , 2010 .

[20]  Nikolai A. Kudryashov,et al.  Nonlinear waves in bubbly liquids with consideration for viscosity and heat transfer , 2010, 1112.5436.

[21]  H. Zedan,et al.  The Sine-Cosine Method For The Davey-Stewartson Equations , 2010 .

[22]  A. Wazwaz,et al.  Multiple-soliton solutions for coupled KdV and coupled KP systems , 2009 .

[23]  Anjan Biswas,et al.  1-Soliton solution of the B(m,n) equation with generalized evolution , 2009 .

[24]  Abdul-Majid Wazwaz,et al.  BRIGHT AND DARK SOLITON SOLUTIONS FOR A K (M, N) EQUATION WITH T-DEPENDENT COEFFICIENTS , 2009 .

[25]  Anjan Biswas,et al.  1-soliton solution of the K(m,n) equation with generalized evolution , 2008 .

[26]  A. Bekir Application of the (G′G)-expansion method for nonlinear evolution equations , 2008 .

[27]  M. A. Abdou Further improved F-expansion and new exact solutions for nonlinear evolution equations , 2008 .

[28]  A. Bekir New solitons and periodic wave solutions for some nonlinear physical models by using the sine–cosine method , 2008 .

[29]  M. A. Abdou New solitons and periodic wave solutions for nonlinear physical models , 2008 .

[30]  Abdul-Majid Wazwaz,et al.  New solutions of distinct physical structures to high-dimensional nonlinear evolution equations , 2008, Appl. Math. Comput..

[31]  Mingliang Wang,et al.  The (G' G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics , 2008 .

[32]  Abdul-Majid Wazwaz,et al.  The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations , 2007, Appl. Math. Comput..

[33]  Xiao-yan Tang,et al.  Variable separation solutions for the (3 + 1)-dimensional Jimbo-Miwa equation , 2006 .

[34]  Jinliang Zhang,et al.  The improved F -expansion method and its applications , 2006 .

[35]  Abdul-Majid Wazwaz,et al.  The tanh method and the sine–cosine method for solving the KP-MEW equation , 2005, Int. J. Comput. Math..

[36]  Abdul-Majid Wazwaz,et al.  A sine-cosine method for handlingnonlinear wave equations , 2004, Math. Comput. Model..

[37]  Abdul-Majid Wazwaz,et al.  The tanh method for traveling wave solutions of nonlinear equations , 2004, Appl. Math. Comput..

[38]  Jian Zhang,et al.  Applications of the Jacobi elliptic function method to special-type nonlinear equations , 2002 .

[39]  Zhaosheng Feng,et al.  The first-integral method to study the Burgers–Korteweg–de Vries equation , 2002 .

[40]  M. Senthilvelan,et al.  On the extended applications of Homogenous Balance Method , 2001, Appl. Math. Comput..

[41]  Zuntao Fu,et al.  JACOBI ELLIPTIC FUNCTION EXPANSION METHOD AND PERIODIC WAVE SOLUTIONS OF NONLINEAR WAVE EQUATIONS , 2001 .

[42]  E. Fan,et al.  Extended tanh-function method and its applications to nonlinear equations , 2000 .

[43]  E. Fan,et al.  A note on the homogeneous balance method , 1998 .

[44]  W. Hereman,et al.  The tanh method: I. Exact solutions of nonlinear evolution and wave equations , 1996 .

[45]  Mingliang Wang Exact solutions for a compound KdV-Burgers equation , 1996 .

[46]  W. Malfliet Solitary wave solutions of nonlinear wave equations , 1992 .

[47]  M. Jimbo,et al.  Solitons and Infinite Dimensional Lie Algebras , 1983 .