Coupling of COBAYA3/SUBCHANFLOW inside the NURESIM platform and validation using selected benchmarks

Abstract Current generation of codes applied to Light Water Reactors (LWR) are based on 3D neutronic nodal methods coupled with one or two phase flow thermal–hydraulic system or subchannel codes. Multi-scale and multi-physics problems reveal significant challenges while dealing with coupled neutronic/thermal–hydraulic solutions. In addition, spatial meshing and temporal schemes are crucial for the proper description of the non-symmetrical core behavior in case of plant transient e.g. Main Steam Line Break (MSLB). This paper describes the coupling approach between the 3D neutron diffusion code COBAYA3 and the sub-channel code SUBCHANFLOW within the NURESIM platform making use of the unique functionalities for code coupling e.g. the automatic mesh superposition of the involved domains. The details of the implemented coupling schemes for steady-state and transient simulations are introduced. The main results of the validation of COBAYA3/SUBCHANFLOW based on the TMI-1 MSLB and the Kalinin-3 Cooling Transient benchmark are also presented. Finally, a discussion of the prediction capability of COBAYA3/SUBCHANFLOW based on the analysis of different benchmarks is provided.

[1]  Kostadin Ivanov,et al.  High fidelity simulation of conventional and innovative LWR with the coupled Monte-Carlo thermal-hydraulic system MCNP-SUBCHANFLOW , 2013 .

[2]  Thomas J. Downar,et al.  High-Fidelity Light Water Reactor Analysis with the Numerical Nuclear Reactor , 2007 .

[3]  Robert Stieglitz,et al.  Investigations of boron transport in a PWR core with COBAYA3/SUBCHANFLOW inside the NURESIM platform , 2014 .

[4]  Derek Gaston,et al.  MOOSE: A parallel computational framework for coupled systems of nonlinear equations , 2009 .

[5]  N. García-Herranz,et al.  Extension of the analytic nodal diffusion solver ANDES to triangular-Z geometry and coupling with COBRA-IIIc for hexagonal core analysis , 2010 .

[6]  Kostadin Ivanov,et al.  DYNSUB: A high fidelity coupled code system for the evaluation of local safety parameters – Part II: Comparison of different temporal schemes , 2012 .

[7]  Uwe Imke,et al.  Validation of the Subchannel Code SUBCHANFLOW Using the NUPEC PWR Tests (PSBT) , 2012 .

[8]  Juan Andrés Lozano Montero Desarrollo de un código nodal analítico de difusión neutrónica en multigrupos para reactores nucleares en geometrías 3d rectangulares y hexagonales , 2010 .

[9]  Kostadin Ivanov,et al.  Nodal kinetics model upgrade in the Penn State coupled TRAC/NEM codes , 1999 .

[10]  Robert Stieglitz,et al.  A coupled neutronic/thermal-hydraulic scheme between COBAYA3 and SUBCHANFLOW within the NURESIM simulation platform , 2012 .

[11]  Manuel Calleja Reyna Improvements in Multi-physics and Multi-scale Methodologies for Safety-related Investigations of Pressurized Water Reactors within the NURESIM Platform , 2013 .

[12]  Javier Jiménez Escalante Desarrollo e implementación de la descomposición en subdominios del acoplamiento neutrónico-termohidráulico mediante disecciones alternadas con un sistema de cálculo multiescala , 2011 .

[13]  M. Avramova,et al.  Challenges in coupled thermal-hydraulics and neutronics simulations for LWR safety analysis , 2007 .