Numerical and Experimental Demonstration of Intermodal Dispersive Wave Generation

Evidence of intermodal dispersive wave generation mediated by intermodal cross‐phase modulation (iXPM) between different transverse modes during supercontinuum generation in silicon nitride waveguides is presented. The formation of a higher‐order soliton in one strong transverse mode leads to phase modulation of a second, weak transverse mode by iXPM. The phase modulation enables not only supercontinuum generation but also dispersive wave generation within the weak mode, that otherwise has insufficient power to facilitate dispersive wave formation. The nonlinear frequency conversion scheme presented here suggests phase‐matching conditions beyond what is currently known, which can be exploited for extending the spectral bandwidth within supercontinuum generation.

[1]  Niklas M. Lüpken,et al.  Optical parametric amplification in silicon nitride waveguides for coherent Raman imaging , 2021, 2021 Conference on Lasers and Electro-Optics (CLEO).

[2]  Niklas M. Lüpken,et al.  Higher-order mode supercontinuum generation in dispersion-engineered liquid-core fibers , 2021, Scientific Reports.

[3]  S. Papp,et al.  Nanophotonic tantala waveguides for supercontinuum generation pumped at 1560  nm. , 2020, Optics letters.

[4]  Niklas M. Lüpken,et al.  Spontaneous four-wave mixing in silicon nitride waveguides for broadband coherent anti-Stokes Raman scattering spectroscopy. , 2020, Optics letters.

[5]  Niklas M. Lüpken,et al.  Bandwidth-limited few-cycle pulses by nonlinear compression in a dispersion-alternating fiber , 2020, Applied Physics B.

[6]  Niklas M. Lüpken,et al.  Supercontinuum Generation in Media with Sign‐Alternated Dispersion , 2019, Laser & Photonics Reviews.

[7]  F. Wildi,et al.  Visible blue-to-red 10  GHz frequency comb via on-chip triple-sum-frequency generation. , 2019, Optics letters.

[8]  M. Watts,et al.  Supercontinuum generation in varying dispersion and birefringent silicon waveguide. , 2019, Optics express.

[9]  T. Kippenberg,et al.  Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum , 2019, Nature Communications.

[10]  P. Kristensen,et al.  Soliton self-mode conversion: revisiting Raman scattering of ultrashort pulses , 2019, Optica.

[11]  Christian Breyer,et al.  Radical transformation pathway towards sustainable electricity via evolutionary steps , 2019, Nature Communications.

[12]  Niklas M. Lüpken,et al.  Low-power broadband all-optical switching via intermodal cross-phase modulation in integrated optical waveguides. , 2018, Optics letters.

[13]  Ming Xin,et al.  Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm , 2017, Light: Science & Applications.

[14]  Jesse Mak,et al.  Photo-induced second-order nonlinearity in stoichiometric silicon nitride waveguides , 2017, 1710.03010.

[15]  F. Stutzki,et al.  Hybrid soliton dynamics in liquid-core fibres , 2017, Nature Communications.

[16]  Marcel Hoekman,et al.  Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths. , 2017, Optics express.

[17]  Vincent Couderc,et al.  Spatial beam self-cleaning in multimode fibres , 2016, Nature Photonics.

[18]  Michal Lipson,et al.  Quantum interference between transverse spatial waveguide modes , 2016, Nature Communications.

[19]  John E. Bowers,et al.  Frequency comb generation in the green using silicon nitride microresonators , 2016 .

[20]  Logan G. Wright,et al.  Visible supercontinuum generation in a graded index multimode fiber pumped at 1064  nm. , 2016, Optics letters.

[21]  Frank W. Wise,et al.  Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[22]  V. Brasch,et al.  Photonic chip–based optical frequency comb using soliton Cherenkov radiation , 2014, Science.

[23]  A. Leinse,et al.  On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth. , 2015, Optics express.

[24]  M. Lipson,et al.  Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides. , 2015, Optics express.

[25]  Frank W. Wise,et al.  Spatiotemporal dynamics of multimode optical solitons , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[26]  Paul Steinvurzel,et al.  Intermodal nonlinear mixing with Bessel beams in optical fiber , 2015 .

[27]  Yi Yu,et al.  A broadband, quasi‐continuous, mid‐infrared supercontinuum generated in a chalcogenide glass waveguide , 2014 .

[28]  Marko Loncar,et al.  Diamond nonlinear photonics , 2014, Nature Photonics.

[29]  I Hartl,et al.  Mid-infrared supercontinuum generation in As2S3-silica "nano-spike" step-index waveguide. , 2013, Optics express.

[30]  Lars Grüner-Nielsen,et al.  Intermodal Čerenkov radiation in a higher-order-mode fiber. , 2012, Optics letters.

[31]  Carsten Langrock,et al.  Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system. , 2011, Optics letters.

[32]  Michal Lipson,et al.  Harmonic generation in silicon nitride ring resonators. , 2010, Optics express.

[33]  Steven W. Brown,et al.  Supercontinuum sources for metrology , 2009 .

[34]  Francesco Poletti,et al.  Dynamics of femtosecond supercontinuum generation in multimode fibers. , 2009, Optics express.

[35]  Francesco Poletti,et al.  Description of ultrashort pulse propagation in multimode optical fibers , 2008 .

[36]  S. Leon-Saval,et al.  Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. , 2006, Optics express.

[37]  T. Andersen,et al.  Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths. , 2005, Optics express.

[38]  M Lehtonen,et al.  Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses. , 2004, Optics express.

[39]  Hiro-o Hamaguchi,et al.  Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy. , 2003, Optics letters.

[40]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[41]  G Korn,et al.  Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. , 2002, Physical review letters.