IMAGE-DRIVEN COMPUTATIONAL MODELS OF THE HEART FOR TETRALOGY OF FALLOT

In the last decades, researchers have been striving to develop computational models of the beating heart. Shifting from model generality to patient specificity, recent studies are demonstrating the potential impacts of such models on the clinical workflow. This chapter introduces three image-driven computational models of the heart that combine statistical and physiological priors for diagnosis, prognosis and therapy planning in repaired tetralogy of Fallot (rToF), a severe congenital heart disease. We first illustrate how physiological priors about the cardiac mechanics make the estimation of myocardium strain more reli- able, thus improving disease diagnosis. An algorithm that automatically tracks the heart along image sequences is constrained to estimate elastic and incompressible deformations, two fundamental properties of the myocardium. Then, we estimate a generative model of the right ventricular (RV) remodelling in rToF patients for disease prognosis. Computed us- ing statistical shape analyses and partial least squares, the model suggested that the dilation, the basal bulging and the apical dilation typically observed in these patients appear progres- sively as the child grows. These findings could support the cardiologist in predicting the evolution of the pathology for planning pulmonary valve replacement (PVR), the current state-of-the-art therapy in rToF. Finally, we introduce an electromechanical (EM) model of the heart for personalised planning of PVR with RV volume reduction in two patients. The EM model simulates the main features of the beating heart. After personalisation, the virtual heart is used to simulate PVR. As expected, the predicted postoperative function significantly improved in both patients. As illustrated by these results, combining medical

[1]  Thomas S. Denney,et al.  Contour regularized left ventricular strain analysis from cine MRI , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[2]  H. Wen,et al.  DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. , 1999, Journal of magnetic resonance.

[3]  L. Glass,et al.  Theory of heart : biomechanics, biophysics, and nonlinear dynamics of cardiac function , 1991 .

[4]  Nicholas Ayache,et al.  A Log-Euclidean Framework for Statistics on Diffeomorphisms , 2006, MICCAI.

[5]  Hervé Delingette,et al.  International Journal of Computer Vision Manuscript No. 10.1007/s11263-010-0405-z The final publication is available at www.springerlink.com iLogDemons: A Demons-Based Registration Algorithm for Tracking Incompressible Elastic Biological Tissues , 2022 .

[6]  Florence Billet,et al.  Assimilation de données images pour la personnalisation d'un modèle électromécanique du coeur , 2010 .

[7]  Simon R. Arridge,et al.  Model-Based Imaging of Cardiac Apparent Conductivity and Local Conduction Velocity for Diagnosis and Planning of Therapy , 2008, IEEE Transactions on Medical Imaging.

[8]  Hervé Delingette,et al.  A Computational Framework for the Statistical Analysis of Cardiac Diffusion Tensors: Application to a Small Database of Canine Hearts , 2007, IEEE Transactions on Medical Imaging.

[9]  Maxime Sermesant,et al.  Cardiac Function Estimation from MRI Using a Heart Model and Data Assimilation: Advances and Difficulties , 2005, FIMH.

[10]  P. Hunter,et al.  Modelling the mechanical properties of cardiac muscle. , 1998, Progress in biophysics and molecular biology.

[11]  Robert H. Anderson,et al.  Functional Analysis of the Components of the Right Ventricle in the Setting of Tetralogy of Fallot , 2008, Circulation. Cardiovascular imaging.

[12]  Frédérique Clément,et al.  A Biomechanical Model of Muscle Contraction , 2001, MICCAI.

[13]  Leon Axel,et al.  Numerical and in vivo validation of fast cine displacement‐encoded with stimulated echoes (DENSE) MRI for quantification of regional cardiac function , 2009, Magnetic resonance in medicine.

[14]  Hervé Delingette,et al.  Interactive Real Time Simulation of Cardiac Radio-Frequency Ablation , 2010, VCBM.

[15]  Andrew D. Krahn,et al.  Handbook of Cardiac Electrophysiology: A Practical Guide to Invasive EP Studies and Catheter Ablation , 2002 .

[16]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods/ J. A. Sethian , 1999 .

[17]  Martyn P. Nash,et al.  Mechanics and material properties of the heart using an anatomically accurate mathematical model. , 1998 .

[18]  Hervé Delingette,et al.  Non-linear anisotropic elasticity for real-time surgery simulation , 2003, Graph. Model..

[19]  R. Aliev,et al.  A simple two-variable model of cardiac excitation , 1996 .

[20]  Michael Jerosch-Herold,et al.  Three-dimensional shape analysis of right ventricular remodeling in repaired tetralogy of Fallot. , 2008, The American journal of cardiology.

[21]  Nicholas Ayache,et al.  Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach , 2008, MICCAI.

[22]  Michael I. Miller,et al.  Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer's type , 2008, NeuroImage.

[23]  Pieter A Doevendans,et al.  Echocardiographic quantification of myocardial function using tissue deformation imaging, a guide to image acquisition and analysis using tissue Doppler and speckle tracking , 2007, Cardiovascular ultrasound.

[24]  Jeroen J. Bax,et al.  Results of the Predictors of Response to CRT (PROSPECT) Trial , 2008, Circulation.

[25]  Hervé Delingette,et al.  Virtual Pulmonary Valve Replacement Interventions with a Personalised Cardiac Electromechanical Model , 2009, Recent Advances in the 3D Physiological Human.

[26]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[27]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[28]  Alain Trouvé,et al.  Statistical models of sets of curves and surfaces based on currents , 2009, Medical Image Anal..

[29]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[30]  Milan Sonka,et al.  4-D Cardiac MR Image Analysis: Left and Right Ventricular Morphology and Function , 2010, IEEE Transactions on Medical Imaging.

[31]  E. McVeigh,et al.  Three-dimensional systolic strain patterns in the normal human left ventricle: characterization with tagged MR imaging. , 2000, Radiology.

[32]  Martin J Schalij,et al.  Follow-up after pulmonary valve replacement in adults with tetralogy of Fallot: association between QRS duration and outcome. , 2010, Journal of the American College of Cardiology.

[33]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[34]  C. Broit Optimal registration of deformed images , 1981 .

[35]  J. Weiss,et al.  Measurement of strain in the left ventricle during diastole with cine-MRI and deformable image registration. , 2005, Journal of biomechanical engineering.

[36]  Patrick Clarysse,et al.  A dynamic elastic model for segmentation and tracking of the heart in MR image sequences , 2010, Medical Image Anal..

[37]  Tal Geva,et al.  Indications and timing of pulmonary valve replacement after tetralogy of Fallot repair. , 2007, Seminars in thoracic and cardiovascular surgery. Pediatric cardiac surgery annual.

[38]  Hervé Delingette,et al.  Coupled Personalisation of Electrophysiology Models for Simulation of Induced Ischemic Ventricular Tachycardia , 2010, MICCAI.

[39]  Hervé Delingette,et al.  Building maps of local apparent conductivity of the epicardium with a 2-D electrophysiological model of the heart , 2006, IEEE Transactions on Biomedical Engineering.

[40]  Charles A. Taylor,et al.  A Computational Framework for Fluid-Solid-Growth Modeling in Cardiovascular Simulations. , 2009, Computer methods in applied mechanics and engineering.

[41]  Tom Vercauteren,et al.  Diffeomorphic demons: Efficient non-parametric image registration , 2009, NeuroImage.

[42]  D. Sánchez-Quintana,et al.  Ventricular myoarchitecture in tetralogy of Fallot. , 1996, Heart.

[43]  Peter J Hunter,et al.  Modeling total heart function. , 2003, Annual review of biomedical engineering.

[44]  A. McCulloch,et al.  Relating myocardial laminar architecture to shear strain and muscle fiber orientation. , 2001, American journal of physiology. Heart and circulatory physiology.

[45]  Y. Amit,et al.  Towards a coherent statistical framework for dense deformable template estimation , 2007 .

[46]  Pedro J. del Nido,et al.  Surgical Management of Right Ventricular Dysfunction Late After Repair of Tetralogy of Fallot: Right Ventricular Remodeling Surgery , 2006 .

[47]  J. NAGUMOt,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 2006 .

[48]  James S. Duncan,et al.  Estimating 3D Strain from 4D Cine-MRI and Echocardiography: In-Vivo Validation , 2000, MICCAI.

[49]  Patrick Clarysse,et al.  Locally Adapted Spatio-temporal Deformation Model for Dense Motion Estimation in Periodic Cardiac Image Sequences , 2007, FIMH.

[50]  A McCulloch,et al.  Computational biology of the heart: from structure to function. , 1998, Progress in biophysics and molecular biology.

[51]  Jean Meunier,et al.  Average Brain Models: A Convergence Study , 2000, Comput. Vis. Image Underst..

[52]  Huafeng Liu,et al.  Stochastic finite element framework for simultaneous estimation of cardiac kinematic functions and material parameters , 2003, Medical Image Anal..

[53]  Johannes Nordmeyer,et al.  Current approaches to pulmonary regurgitation. , 2008, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[54]  A. McCulloch,et al.  Modelling cardiac mechanical properties in three dimensions , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[55]  Nicholas Ayache,et al.  c ○ 2004 Kluwer Academic Publishers. Manufactured in The Netherlands. Isotropic Energies, Filters and Splines for Vector Field Regularization , 2022 .

[56]  Dalin Tang,et al.  MRI-Based Patient-Specific Computational Modeling of Right Ventricular Response to Pulmonary Valve Insertion Surgery: A Passive Anisotropic FSI Model with Fiber Orientation , 2008, 2008 International Conference on BioMedical Engineering and Informatics.

[57]  Farida Cheriet,et al.  Large deformation registration of contrast-enhanced images with volume-preserving constraint , 2007, SPIE Medical Imaging.

[58]  Dimitris N. Metaxas,et al.  Atrioventricular Blood Flow Simulation Based on Patient-Specific Data , 2009, FIMH.

[59]  Tal Geva,et al.  Range of ventricular dimensions and function by steady‐state free precession cine MRI in repaired tetralogy of Fallot: Right ventricular outflow tract patch vs. conduit repair , 2007, Journal of magnetic resonance imaging : JMRI.

[60]  Theo Arts,et al.  Constitutive Modeling of Cardiac Tissue Growth , 2007, FIMH.

[61]  Pascal Frey,et al.  Fluid-structure interaction in blood flows on geometries based on medical imaging , 2005 .

[62]  Hervé Delingette,et al.  An Integrated Platform for Dynamic Cardiac Simulation and Image Processing: Application to Personalised Tetralogy of Fallot Simulation , 2008, VCBM.

[63]  Bijoy K Khandheria,et al.  Twist and untwist mechanics of the left ventricle. , 2008, Heart failure clinics.

[64]  Dorin Comaniciu,et al.  Learning-based 3D myocardial motion flowestimation using high frame rate volumetric ultrasound data , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[65]  Yves L Provost,et al.  Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair. , 2005, The American journal of cardiology.

[66]  Daniel Rueckert,et al.  Comparison of Cardiac Motion Across Subjects Using Non-rigid Registration , 2002, MICCAI.

[67]  N. Stergiopulos,et al.  Total arterial inertance as the fourth element of the windkessel model. , 1999, American journal of physiology. Heart and circulatory physiology.

[68]  P. Hunter,et al.  Integration from proteins to organs: the Physiome Project , 2003, Nature Reviews Molecular Cell Biology.

[69]  E. McVeigh,et al.  Regional myocardial function. , 1998, Cardiology clinics.

[70]  D. Caillerie,et al.  Cell-to-Muscle homogenization. Application to a constitutive law for the myocardium , 2003 .

[71]  Hervé Delingette,et al.  Toward patient-specific myocardial models of the heart. , 2008, Heart failure clinics.

[72]  Torsten Rohlfing,et al.  Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint , 2003, IEEE Transactions on Medical Imaging.

[73]  E. Zerhouni,et al.  Human heart: tagging with MR imaging--a method for noninvasive assessment of myocardial motion. , 1988, Radiology.

[74]  Tommaso Mansi,et al.  Image-based physiological and statistical models of the heart: application to tetralogy of Fallot. (Modèles physiologiques et statistiques du cœur guidés par imagerie médicale : application à la tétralogie de Fallot) , 2010 .

[75]  Hervé Delingette,et al.  Personalised Electromechanical Model of the Heart for the Prediction of the Acute Effects of Cardiac Resynchronisation Therapy , 2009, FIMH.

[76]  James P. Keener,et al.  Mathematical physiology , 1998 .

[77]  Boris C. Bernhardt,et al.  A Statistical Model of Right Ventricle in Tetralogy of Fallot for Prediction of Remodelling and Therapy Planning , 2009, MICCAI.

[78]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[79]  R. Razavi,et al.  Percutaneous Pulmonary Valve Implantation in Humans: Results in 59 Consecutive Patients , 2005, Circulation.

[80]  Hervé Delingette,et al.  An electromechanical model of the heart for image analysis and simulation , 2006, IEEE Transactions on Medical Imaging.

[81]  Geoffrey I. Webb,et al.  Pulmonary valve replacement in adults late after repair of tetralogy of fallot: are we operating too late? , 2000, Journal of the American College of Cardiology.

[82]  Alejandro F. Frangi,et al.  Three-dimensional modeling for functional analysis of cardiac images, a review , 2001, IEEE Transactions on Medical Imaging.

[83]  Oskar M. Skrinjar,et al.  Myocardial deformation recovery from cine MRI using a nearly incompressible biventricular model , 2008, Medical Image Anal..

[84]  A. Çobanoğlu,et al.  Total correction of tetralogy of Fallot in the first year of life: late results. , 2002, The Annals of thoracic surgery.

[85]  P. Hunter,et al.  The analysis of cardiac function: a continuum approach. , 1988, Progress in biophysics and molecular biology.

[86]  A V Panfilov,et al.  A guide to modelling cardiac electrical activity in anatomically detailed ventricles. , 2008, Progress in biophysics and molecular biology.

[87]  S. Niederer,et al.  An improved numerical method for strong coupling of excitation and contraction models in the heart. , 2008, Progress in biophysics and molecular biology.

[88]  D. Noble A modification of the Hodgkin—Huxley equations applicable to Purkinje fibre action and pacemaker potentials , 1962, The Journal of physiology.

[89]  K.H.W.J. ten Tusscher,et al.  Comments on 'A model for human ventricular tissue' : reply , 2005 .

[90]  D. Schaeffer,et al.  A two-current model for the dynamics of cardiac membrane , 2003, Bulletin of mathematical biology.

[91]  Christos Davatzikos,et al.  GRAM: A framework for geodesic registration on anatomical manifolds , 2010, Medical Image Anal..

[92]  A. McCulloch,et al.  Stress-dependent finite growth in soft elastic tissues. , 1994, Journal of biomechanics.

[93]  Dorin Comaniciu,et al.  Four-Chamber Heart Modeling and Automatic Segmentation for 3-D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features , 2008, IEEE Transactions on Medical Imaging.

[94]  Nicholas Ayache,et al.  Characterization of Post-infarct Scars in a Porcine Model - A Combined Experimental and Theoretical Study , 2009, FIMH.

[95]  E. Haber,et al.  Numerical methods for volume preserving image registration , 2004 .

[96]  Olivier Ecabert,et al.  Automatic Model-Based Segmentation of the Heart in CT Images , 2008, IEEE Transactions on Medical Imaging.

[97]  Joan Alexis Glaunès,et al.  Surface Matching via Currents , 2005, IPMI.

[98]  Dd. Streeter,et al.  Gross morphology and fiber geometry of the heart , 1979 .

[99]  Yohan Payan,et al.  Efficient, Physically Plausible Finite Elements , 2005, Eurographics.

[100]  Pierre Alliez,et al.  Computational geometry algorithms library , 2008, SIGGRAPH '08.

[101]  Patrice Y. Simard,et al.  A Projection Operator for the Restoration of Divergence-Free Vector Fields , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[102]  D. Chapelle,et al.  MODELING AND ESTIMATION OF THE CARDIAC ELECTROMECHANICAL ACTIVITY , 2006 .

[103]  P. C. Franzone,et al.  Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations , 1990, Journal of mathematical biology.

[104]  James S. Duncan,et al.  A coupled deformable model for tracking myocardial borders from real-time echocardiography using an incompressibility constraint , 2010, Medical Image Anal..

[105]  P. Hunter,et al.  Computational Mechanics of the Heart , 2000 .

[106]  Roman Rosipal,et al.  Overview and Recent Advances in Partial Least Squares , 2005, SLSFS.

[107]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[108]  Berend E. Westerhof,et al.  The arterial Windkessel , 2009, Medical & Biological Engineering & Computing.

[109]  Stephane Cotin,et al.  EP4A: Software and Computer Based Simulator Research: Development and Outlook SOFA—An Open Source Framework for Medical Simulation , 2007, MMVR.

[110]  Hervé Delingette,et al.  An Anisotropic Multi-front Fast Marching Method for Real-Time Simulation of Cardiac Electrophysiology , 2007, FIMH.

[111]  A. Redington,et al.  Changes in the pressure-volume relation of the right ventricle when its loading conditions are modified. , 1990, British heart journal.