Theoretical approach to the Curie temperature shift in FM1/NM/FM2/SUB (ferromagnetic metal 1/nonmagnetic metal/ferromagnetic metal 2/substrate) systems

An itinerant-electron model is proposed for investigating the Curie temperature shift in indirectly coupled itinerant ferromagnetic metal/nonmagnetic metal/ferromagnetic metal (FM2)/substrate structures. The Coulomb correlation between the electrons in the ferromagnetic metal is treated by using the spectral density approach. The magnetic susceptibility is used to determine the Curie temperature shift due to the interlayer exchange coupling. The relation between the Curie temperature shift and the interlayer exchange coupling is studied. It shows that the Curie temperature shift is related to the strength of the interlayer exchange coupling due to FM2 sublayers other than that of the whole system at high temperature. Good agreements with experiments are obtained.

[1]  W. Nolting,et al.  Magnetic stability at the surface in strongly correlated electron systems , 1999, cond-mat/9908198.

[2]  J. Wu,et al.  INFLUENCE OF UNCORRELATED OVERLAYERS ON THE MAGNETISM IN THIN ITINERANT-ELECTRON FILMS , 1999, cond-mat/9908203.

[3]  L. Hammer,et al.  Structure of ultrathin Ni/Cu(001) films as a function of film thickness, temperature, and magnetic order , 1999 .

[4]  M. Farle,et al.  Oscillations of the Curie temperature and interlayer exchange coupling in magnetic trilayers , 1999 .

[5]  T. Herrmann,et al.  Ferromagnetism in thin itinerant-electron films , 1999 .

[6]  M. Potthoff,et al.  The moment sum rule and its consequences for ferromagnetism in the Hubbard model , 1998, cond-mat/9809212.

[7]  M. Farle,et al.  Two Susceptibility Maxima and Element Specific Magnetizations in Indirectly Coupled Ferromagnetic Layers , 1998 .

[8]  M. Potthoff,et al.  FERROMAGNETISM AND A TEMPERATURE-DRIVEN REORIENTATION TRANSITION IN THIN ITINERANT-ELECTRON FILMS , 1998, cond-mat/9804301.

[9]  M. Potthoff,et al.  Curie temperature and layer magnetizations of thin bcc (110) Hubbard films , 1997 .

[10]  W. Nolting,et al.  Magnetism in the single-band Hubbard model , 1997, cond-mat/9702022.

[11]  M. Potthoff,et al.  The large-U Hubbard model for a semi-infinite crystal : a moment approach and an energy-dependent recursion method , 1996 .

[12]  Johansson,et al.  Quantum-well states and induced magnetism in Fe/CuN/Fe bcc (001) trilayers. , 1996, Physical review. B, Condensed matter.

[13]  A. Vega,et al.  Finite-temperature ferromagnetism of f.c.c. cobalt , 1996 .

[14]  P. Bruno,et al.  Theory of interlayer magnetic coupling. , 1995, Physical review. B, Condensed matter.

[15]  Johnson,et al.  Spin polarization of quantum well states in copper thin films deposited on a Co(001) substrate. , 1993, Physical review letters.

[16]  Rader,et al.  Exchange split quantum well states of a noble metal film on a magnetic substrate. , 1993, Physical review letters.

[17]  Mills Dl,et al.  Onset of long-range order in superlattices: Mean-field theory. , 1992 .

[18]  Ortega,et al.  Quantum well states as mediators of magnetic coupling in superlattices. , 1992, Physical review letters.

[19]  R. Camley,et al.  Phase transitions in antiferromagnetic superlattices. , 1992, Physical review. B, Condensed matter.

[20]  Mathon,et al.  Oscillations of the exchange in magnetic multilayers as an analog of de Haas-van Alphen effect. , 1991, Physical review letters.

[21]  Parkin,et al.  Oscillatory magnetic exchange coupling through thin copper layers. , 1991, Physical review letters.

[22]  King,et al.  New antiferromagnetic insulator superlattices: Structural and magnetic characterization of (FeF2)m(CoF2)n. , 1990, Physical review letters.

[23]  Parkin,et al.  Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. , 1990, Physical review letters.

[24]  Nolting,et al.  Band magnetism in the Hubbard model. , 1989, Physical review. B, Condensed matter.

[25]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[26]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[27]  Schreiber,et al.  Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. , 1986, Physical review letters.

[28]  R. Lange,et al.  Single-Particle Excitations in Narrow Energy Bands , 1967 .

[29]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[30]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.