A Constructive Learning Algorithm for Text Categorization

The paper presents a new constructive learning algorithm CWSN (Covering With Sphere Neighborhoods) for three-layer neural networks, and uses it to solve the text categorization (TC) problem. The algorithm is based on a geometrical representation of M-P neuron, i.e., for each category, CWSN tries to find a set of sphere neighborhoods which cover as many positive documents as possible, and don’t cover any negative documents. Each sphere neighborhood represents a covering area in the vector space and it also corresponds to a hidden neuron in the network. The experimental results show that CWSN demonstrates promising performance compared to other commonly used TC classifiers.