Agonist and antagonist switch DNA motifs recognized by human androgen receptor in prostate cancer

Human transcription factors recognize specific DNA sequence motifs to regulate transcription. It is unknown whether a single transcription factor is able to bind to distinctly different motifs on chromatin, and if so, what determines the usage of specific motifs. By using a motif‐resolution chromatin immunoprecipitation‐exonuclease (ChIP‐exo) approach, we find that agonist‐liganded human androgen receptor (AR) and antagonist‐liganded AR bind to two distinctly different motifs, leading to distinct transcriptional outcomes in prostate cancer cells. Further analysis on clinical prostate tissues reveals that the binding of AR to these two distinct motifs is involved in prostate carcinogenesis. Together, these results suggest that unique ligands may switch DNA motifs recognized by ligand‐dependent transcription factors in vivo. Our findings also provide a broad mechanistic foundation for understanding ligand‐specific induction of gene expression profiles.

[1]  Frank Claessens,et al.  Looking at nuclear receptors from a new angle , 2014, Molecular and Cellular Endocrinology.

[2]  K. Nephew,et al.  Three-tiered role of the pioneer factor GATA2 in promoting androgen-dependent gene expression in prostate cancer , 2014, Nucleic acids research.

[3]  Jason S Carroll,et al.  Development of an Illumina-based ChIP-exonuclease method provides insight into FoxA1-DNA binding properties , 2013, Genome Biology.

[4]  D. Zheng,et al.  Glucocorticoid Receptor Confers Resistance to Antiandrogens by Bypassing Androgen Receptor Blockade , 2013, Cell.

[5]  M. Vingron,et al.  A naturally occuring insertion of a single amino acid rewires transcriptional regulation by glucocorticoid receptor isoforms , 2013, Proceedings of the National Academy of Sciences.

[6]  S. Bernales,et al.  Enzalutamide, an androgen receptor signaling inhibitor, induces tumor regression in a mouse model of castration‐resistant prostate cancer , 2013, The Prostate.

[7]  Gang Shao,et al.  A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. , 2013, Cancer discovery.

[8]  Joshua M. Korn,et al.  An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). , 2013, Cancer discovery.

[9]  R. Andersen,et al.  An androgen receptor N-terminal domain antagonist for treating prostate cancer. , 2013, The Journal of clinical investigation.

[10]  V. Arora,et al.  Overcoming mutation-based resistance to antiandrogens with rational drug design , 2013, eLife.

[11]  A. D’Ambrogio,et al.  Translational control of cell growth and malignancy by the CPEBs , 2013, Nature Reviews Cancer.

[12]  Dalei Wu,et al.  Multi-Domain Integration in the Structure of the HNF4α Nuclear Receptor Complex , 2013, Nature.

[13]  Juan M. Vaquerizas,et al.  DNA-Binding Specificities of Human Transcription Factors , 2013, Cell.

[14]  I. Mills,et al.  The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. , 2013, Cancer cell.

[15]  T. Furey ChIP – seq and beyond : new and improved methodologies to detect and characterize protein – DNA interactions , 2012 .

[16]  James Taylor,et al.  Genomic approaches towards finding cis-regulatory modules in animals , 2012, Nature Reviews Genetics.

[17]  Clifford A. Meyer,et al.  Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics , 2012, Genome research.

[18]  F. Claessens,et al.  Evidence for DNA-Binding Domain–Ligand-Binding Domain Communications in the Androgen Receptor , 2012, Molecular and Cellular Biology.

[19]  Ruchir R. Shah,et al.  Analysis of Chromatin Dynamics during Glucocorticoid Receptor Activation , 2012, Molecular and Cellular Biology.

[20]  S. Boonen,et al.  Structural basis for nuclear hormone receptor DNA binding , 2012, Molecular and Cellular Endocrinology.

[21]  B. Pugh,et al.  Genome-wide structure and organization of eukaryotic pre-initiation complexes , 2011, Nature.

[22]  I. Ellis,et al.  Differential oestrogen receptor binding is associated with clinical outcome in breast cancer , 2011, Nature.

[23]  B. Pugh,et al.  Comprehensive Genome-wide Protein-DNA Interactions Detected at Single-Nucleotide Resolution , 2011, Cell.

[24]  K. Nephew,et al.  Androgen receptor-driven chromatin looping in prostate cancer , 2011, Trends in Endocrinology & Metabolism.

[25]  T. Hickey,et al.  FOXA1: master of steroid receptor function in cancer , 2011, The EMBO journal.

[26]  Gavin D. Meredith,et al.  High Resolution Detection and Analysis of CpG Dinucleotides Methylation Using MBD-Seq Technology , 2011, PloS one.

[27]  I. Mills,et al.  The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis , 2011, The EMBO journal.

[28]  Qianben Wang,et al.  Phospho‐MED1‐enhanced UBE2C locus looping drives castration‐resistant prostate cancer growth , 2011, The EMBO journal.

[29]  G. Stormo,et al.  Quantitative analysis demonstrates most transcription factors require only simple models of specificity , 2011, Nature Biotechnology.

[30]  Jun Zhang,et al.  DNA binding alters coactivator interaction surfaces of the intact VDR–RXR complex , 2011, Nature Structural &Molecular Biology.

[31]  J. Stamatoyannopoulos,et al.  Chromatin accessibility pre-determines glucocorticoid receptor binding patterns , 2011, Nature Genetics.

[32]  Victor X. Jin,et al.  W-ChIPeaks: a comprehensive web application tool for processing ChIP-chip and ChIP-seq data , 2010, Bioinform..

[33]  M. Shen,et al.  Molecular genetics of prostate cancer: new prospects for old challenges. , 2010, Genes & development.

[34]  Wei Li,et al.  Histone modifications and chromatin organization in prostate cancer. , 2010, Epigenomics.

[35]  C. Sander,et al.  Integrative genomic profiling of human prostate cancer. , 2010, Cancer cell.

[36]  F. Claessens,et al.  The rules of DNA recognition by the androgen receptor. , 2010, Molecular endocrinology.

[37]  Clifford A. Meyer,et al.  Nucleosome Dynamics Define Transcriptional Enhancers , 2010, Nature Genetics.

[38]  B. Leyland-Jones,et al.  Prostate cancer genes associated with TMPRSS2–ERG gene fusion and prognostic of biochemical recurrence in multiple cohorts , 2010, British Journal of Cancer.

[39]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[40]  Clifford A. Meyer,et al.  Androgen Receptor Regulates a Distinct Transcription Program in Androgen-Independent Prostate Cancer , 2009, Cell.

[41]  Daniel E. Newburger,et al.  Diversity and Complexity in DNA Recognition by Transcription Factors , 2009, Science.

[42]  H. Stunnenberg,et al.  ChIP‐Seq of ERα and RNA polymerase II defines genes differentially responding to ligands , 2009, The EMBO journal.

[43]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[44]  H. Scher,et al.  Development of a Second-Generation Antiandrogen for Treatment of Advanced Prostate Cancer , 2009, Science.

[45]  K. Yamamoto,et al.  DNA Binding Site Sequence Directs Glucocorticoid Receptor Structure and Activity , 2009, Science.

[46]  Y. Asmann,et al.  A Tissue Biomarker Panel Predicting Systemic Progression after PSA Recurrence Post-Definitive Prostate Cancer Therapy , 2008, PloS one.

[47]  K. Pienta,et al.  A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. , 2007, Molecular cell.

[48]  Kenneth N Ross,et al.  Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. , 2006, Cancer research.

[49]  Akira Komiya,et al.  [Androgen receptor]. , 2005, Nihon rinsho. Japanese journal of clinical medicine.

[50]  T. Vasaitis,et al.  Mechanistic Relationship between Androgen Receptor Polyglutamine Tract Truncation and Androgen-dependent Transcriptional Hyperactivity in Prostate Cancer Cells* , 2004, Journal of Biological Chemistry.

[51]  W. Gerald,et al.  Gene expression profiling predicts clinical outcome of prostate cancer. , 2004, The Journal of clinical investigation.

[52]  Samuel Kotz,et al.  Maximum Likelihood Estimation of Asymmetric Laplace Parameters , 2002 .

[53]  Samuel Kotz,et al.  The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance , 2001 .

[54]  J. Trapman,et al.  The androgen receptor in prostate cancer. , 1996, Pathology, research and practice.

[55]  K. Umesono,et al.  The nuclear receptor superfamily: The second decade , 1995, Cell.

[56]  B. O’Malley,et al.  Molecular interactions of steroid hormone receptor with its enhancer element: Evidence for receptor dimer formation , 1988, Cell.

[57]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .