Modeling of crack propagation via an automatic adaptive mesh refinement based on modified superconvergent patch recovery technique

Abstract In this paper, an automated adaptive remeshing procedure is presented for simulation of arbitrary shape crack growth in a 2D finite element mesh. The Zienkiewicz–Zhu error estimator is employed in conjunction with a modified SPR technique based on the recovery of gradients using analytical crack-tip fields in order to obtain more accurate estimation of errors. The optimization of crack-tip singular finite element size is achieved through the adaptive mesh strategy. Finally, several numerical examples are illustrated to demonstrate the effectiveness, robustness and accuracy of computational algorithm in calculation of fracture parameters and prediction of crack path pattern.

[1]  Amir R. Khoei,et al.  H-adaptive mesh refinement for shear band localization in elasto-plasticity Cosserat continuum , 2005 .

[2]  Nagesh R. Iyer,et al.  New a posteriori error estimator and adaptive mesh refinement strategy for 2-D crack problems , 2006 .

[3]  R. D. Henshell,et al.  CRACK TIP FINITE ELEMENTS ARE UNNECESSARY , 1975 .

[4]  Per Heintz,et al.  On adaptive strategies and error control in fracture mechanics , 2004 .

[5]  H. Ishikawa,et al.  A finite element analysis of stress intensity factors for combined tensile and shear loading by only a virtual crack extension , 1980 .

[6]  Y. R. Rashid,et al.  Ultimate strength analysis of prestressed concrete pressure vessels , 1968 .

[7]  M. German,et al.  Crack extension modeling with singular quadratic isoparametric elements , 1976 .

[8]  A. Needleman,et al.  A COMPARISON OF METHODS FOR CALCULATING ENERGY RELEASE RATES , 1985 .

[9]  T. Belytschko,et al.  Crack propagation by element-free Galerkin methods , 1995 .

[10]  H. D. Bui,et al.  Associated path independent J-integrals for separating mixed modes , 1983 .

[11]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[12]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[13]  Pedro Díez,et al.  Remeshing criteria and proper error representations for goal oriented h-adaptivity☆ , 2007 .

[14]  I. Raju Calculation of strain-energy release rates with higher order and singular finite elements , 1987 .

[15]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[16]  David Broek,et al.  Prospects of Fracture Mechanics , 1974 .

[17]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[18]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[19]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[20]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[21]  P. Bouchard,et al.  Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria , 2003 .

[22]  Hussain,et al.  Strain Energy Release Rate for a Crack Under Combined Mode I and Mode II , 1974 .

[23]  Victor E. Saouma,et al.  Numerical evaluation of the quarter‐point crack tip element , 1984 .

[24]  Amir R. Khoei,et al.  Error estimation, adaptivity and data transfer in enriched plasticity continua to analysis of shear band localization , 2007 .

[25]  L. P. Harrop The optimum size of quarter‐point crack tip elements , 1982 .

[26]  James K. Knowles,et al.  On a class of conservation laws in linearized and finite elastostatics , 1972 .

[27]  R. Barsoum On the use of isoparametric finite elements in linear fracture mechanics , 1976 .

[28]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[29]  G. Sih Strain-energy-density factor applied to mixed mode crack problems , 1974 .

[30]  D. Ngo,et al.  Finite Element Analysis of Reinforced Concrete Beams , 1967 .

[31]  B. Dattaguru,et al.  Modified crack closure integral method with quarter point elements , 1986 .

[32]  Erwin Stein,et al.  Goal-oriented a posteriori error estimates in linear elastic fracture mechanics , 2006 .

[33]  Saeed Asil Gharebaghi,et al.  SUT-DAM: An integrated software environment for multi-disciplinary geotechnical engineering , 2006, Adv. Eng. Softw..

[34]  G. P. Cherepanov Crack propagation in continuous media , 1967 .

[35]  J. Rice,et al.  Elementary engineering fracture mechanics , 1974 .

[36]  J. D. Eshelby The Calculation of Energy Release Rates , 1974 .

[37]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[38]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .