Exact Isosurfaces for Marching Cubes

In this paper we study the exact contours of a piecewise trilinear scalar field. We show how to represent these contours exactly as trimmed surfaces of triangular rational cubic Bézier patches. As part of this, we introduce an extension of the marching cubes algorithm which gives a topologically exact triangular approximation of the contours for any case. Finally, we modify the exact contours to be globally G1 continuous without changing their topologies. We test the algorithm on both theoretical and practical data sets.

[1]  Richard S. Gallagher,et al.  An efficient 3-D visualization technique for finite element models and other coarse volumes , 1989, SIGGRAPH.

[2]  Paolo Cignoni,et al.  Reconstruction of topologically correct and adaptive trilinear isosurfaces , 2000, Comput. Graph..

[3]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[4]  Cindy M. Grimm,et al.  Smooth Isosurface Approximation , 1995 .

[5]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[6]  Ken Brodlie,et al.  Controlled Interpolation for Scientific Visualization , 1994, Scientific Visualization.

[7]  Paul Ning,et al.  An evaluation of implicit surface tilers , 1993, IEEE Computer Graphics and Applications.

[8]  Jane Wilhelms,et al.  Topological considerations in isosurface generation , 1994, TOGS.

[9]  Gerald E. Farin,et al.  On Approximating Contours of the Piecewise Trilinear Interpolant Using Triangular Rational-Quadratic Bézier Patches , 1997, IEEE Trans. Vis. Comput. Graph..

[10]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[11]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[12]  G. Nielson A method for interpolating scattered data based upon a minimum norm network , 1983 .

[13]  John K. Johnstone,et al.  Tensor product surfaces guided by minimal surface area triangulations , 1995, Proceedings Visualization '95.

[14]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[15]  Valerio Pascucci,et al.  Visualization of scalar topology for structural enhancement , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[16]  James H. Oliver,et al.  Generalized unstructured decimation [computer graphics] , 1996, IEEE Computer Graphics and Applications.

[17]  Yong Zhou,et al.  An elaborate ambiguity detection method for constructing isosurfaces within tetrahedral meshes , 1995, Comput. Graph..

[18]  G. Farin,et al.  C1 quintic interpolation over triangles: Two explicit representations , 1981 .

[19]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[20]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[21]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[22]  Bernd Hamann,et al.  Modeling contours of trivariate data , 1992 .