NengoDL: Combining Deep Learning and Neuromorphic Modelling Methods

NengoDL is a software framework designed to combine the strengths of neuromorphic modelling and deep learning. NengoDL allows users to construct biologically detailed neural models, intermix those models with deep learning elements (such as convolutional networks), and then efficiently simulate those models in an easy-to-use, unified framework. In addition, NengoDL allows users to apply deep learning training methods to optimize the parameters of biological neural models. In this paper we present basic usage examples, benchmarking, and details on the key implementation elements of NengoDL. More details can be found at https://www.nengo.ai/nengo-dl.

[1]  James Kozloski,et al.  Self-referential forces are sufficient to explain different dendritic morphologies , 2013, Front. Neuroinform..

[2]  Chris Eliasmith,et al.  Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems , 2004, IEEE Transactions on Neural Networks.

[3]  Tobi Delbrück,et al.  Training Deep Spiking Neural Networks Using Backpropagation , 2016, Front. Neurosci..

[4]  Shih-Chii Liu,et al.  Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification , 2017, Front. Neurosci..

[5]  Terrence C. Stewart,et al.  A Unifying Mechanistic Model of Selective Attention in Spiking Neurons , 2014, PLoS Comput. Biol..

[6]  Dharmendra S. Modha,et al.  Backpropagation for Energy-Efficient Neuromorphic Computing , 2015, NIPS.

[7]  John Salvatier,et al.  Theano: A Python framework for fast computation of mathematical expressions , 2016, ArXiv.

[8]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[9]  Joanna M. Wardlaw,et al.  Whole Brain Magnetic Resonance Image Atlases: A Systematic Review of Existing Atlases and Caveats for Use in Population Imaging , 2017, Front. Neuroinform..

[10]  Trevor Bekolay,et al.  A Large-Scale Model of the Functioning Brain , 2012, Science.

[11]  Chris Eliasmith,et al.  A spiking neural model of adaptive arm control , 2016, Proceedings of the Royal Society B: Biological Sciences.

[12]  Chris Eliasmith,et al.  Training Spiking Deep Networks for Neuromorphic Hardware , 2016, ArXiv.

[13]  Trevor Bekolay,et al.  Nengo: a Python tool for building large-scale functional brain models , 2014, Front. Neuroinform..

[14]  Örjan Ekeberg,et al.  Large-Scale Modeling – a Tool for Conquering the Complexity of the Brain , 2008, Frontiers Neuroinformatics.

[15]  Chris Eliasmith,et al.  A Spiking Neuron Model of Serial-Order Recall , 2010 .

[16]  Xin Xu,et al.  Genome-wide association mapping in winter barley for grain yield and culm cell wall polymer content using the high-throughput CoMPP technique , 2017, PloS one.

[17]  Chris Eliasmith,et al.  Spiking Deep Networks with LIF Neurons , 2015, ArXiv.

[18]  C. Eliasmith,et al.  Learning to Select Actions with Spiking Neurons in the Basal Ganglia , 2012, Front. Neurosci..

[19]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[20]  Luis A. Plana,et al.  SpiNNaker: Mapping neural networks onto a massively-parallel chip multiprocessor , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[21]  Rodrigo Alvarez-Icaza,et al.  Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations , 2014, Proceedings of the IEEE.

[22]  Clément Farabet,et al.  Torch7: A Matlab-like Environment for Machine Learning , 2011, NIPS 2011.

[23]  Romain Brette,et al.  Brian 2 - the second coming: spiking neural network simulation in Python with code generation , 2013, BMC Neuroscience.

[24]  Chris Eliasmith,et al.  Automatic Optimization of the Computation Graph in the Nengo Neural Network Simulator , 2017, Front. Neuroinform..

[25]  Hong Wang,et al.  Loihi: A Neuromorphic Manycore Processor with On-Chip Learning , 2018, IEEE Micro.

[26]  Nikolaus Kriegeskorte,et al.  Deep neural networks: a new framework for modelling biological vision and brain information processing , 2015, bioRxiv.

[27]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[28]  Hans-Jochen Heinze,et al.  Richness in Functional Connectivity Depends on the Neuronal Integrity within the Posterior Cingulate Cortex , 2017, Front. Neurosci..

[29]  Chris Eliasmith,et al.  A neural model of hierarchical reinforcement learning , 2017, CogSci.

[30]  J. DiCarlo,et al.  Using goal-driven deep learning models to understand sensory cortex , 2016, Nature Neuroscience.

[31]  Kendrick N. Kay,et al.  Principles for models of neural information processing , 2017, NeuroImage.

[32]  Pierre Yger,et al.  PyNN: A Common Interface for Neuronal Network Simulators , 2008, Front. Neuroinform..

[33]  Marc-Oliver Gewaltig,et al.  NEST (NEural Simulation Tool) , 2007, Scholarpedia.

[34]  Chris Eliasmith,et al.  A spiking neural model applied to the study of human performance and cognitive decline on Raven's Advanced , 2014 .

[35]  Chris Eliasmith,et al.  Fine-Tuning and the Stability of Recurrent Neural Networks , 2011, PloS one.