Unsupervised ore/waste classification on open-cut mine faces using close-range hyperspectral data

[1]  A. J. Hill,et al.  Automation and AI Technology in Surface Mining With a Brief Introduction to Open-Pit Operations in the Pilbara , 2023, ArXiv.

[2]  W. Middelmann,et al.  Deep self-supervised band-level learning for hyperspectral classification , 2022, Remote Sensing.

[3]  L. Ding,et al.  ES2FL: Ensemble Self-Supervised Feature Learning for Small Sample Classification of Hyperspectral Images , 2022, Remote. Sens..

[4]  X. Han,et al.  Deep Self-Supervised Hyperspectral Image Reconstruction , 2022, ACM Trans. Multim. Comput. Commun. Appl..

[5]  Shuyuan Yang,et al.  Self-Supervised Assisted Semi-Supervised Residual Network for Hyperspectral Image Classification , 2022, Remote. Sens..

[6]  P. R. McAree,et al.  Can Hyperspectral Imaging and Neural Network Classification Be Used for Ore Grade Discrimination at the Point of Excavation? , 2022, Sensors.

[7]  R. Gloaguen,et al.  Hyperspectral outcrop models for palaeoseismic studies , 2019, The Photogrammetric Record.

[8]  Shuhab D. Khan,et al.  Close-range, ground-based hyperspectral imaging for mining applications at various scales: Review and case studies , 2019, Earth-Science Reviews.

[9]  Nicolas Audebert,et al.  Deep Learning for Classification of Hyperspectral Data: A Comparative Review , 2019, IEEE Geoscience and Remote Sensing Magazine.

[10]  Richard J. Murphy,et al.  Unsupervised Feature-Learning for Hyperspectral Data with Autoencoders , 2019, Remote. Sens..

[11]  J. Benediktsson,et al.  New Frontiers in Spectral-Spatial Hyperspectral Image Classification: The Latest Advances Based on Mathematical Morphology, Markov Random Fields, Segmentation, Sparse Representation, and Deep Learning , 2018, IEEE Geoscience and Remote Sensing Magazine.

[12]  Mahdi Khodadadzadeh,et al.  Integration of Terrestrial and Drone-Borne Hyperspectral and Photogrammetric Sensing Methods for Exploration Mapping and Mining Monitoring , 2018, Remote. Sens..

[13]  Richard J. Murphy,et al.  A Physics-Based Deep Learning Approach to Shadow Invariant Representations of Hyperspectral Images , 2018, IEEE Transactions on Image Processing.

[14]  Richard Gloaguen,et al.  Radiometric Correction and 3D Integration of Long-Range Ground-Based Hyperspectral Imagery for Mineral Exploration of Vertical Outcrops , 2018, Remote. Sens..

[15]  Rasmus Fensholt,et al.  Integration of Vessel-Based Hyperspectral Scanning and 3D-Photogrammetry for Mobile Mapping of Steep Coastal Cliffs in the Arctic , 2018, Remote. Sens..

[16]  Richard J. Murphy,et al.  Pretraining for Hyperspectral Convolutional Neural Network Classification , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Richard J. Murphy,et al.  Hyperspectral CNN Classification with Limited Training Samples , 2016, BMVC.

[18]  Shuhab D. Khan,et al.  Study of Upper Albian rudist buildups in the Edwards Formation using ground-based hyperspectral imaging and terrestrial laser scanning , 2016 .

[19]  Richard J. Murphy,et al.  Unsupervised feature learning for illumination robustness , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[20]  Craig Glennie,et al.  Thin-bedded reservoir analogs in an ancient delta using terrestrial laser scanner and high-resolution ground-based hyperspectral cameras , 2016 .

[21]  Richard J. Murphy,et al.  Automated Multi-class Classification of Remotely Sensed Hyperspectral Imagery Via Gaussian Processes with a Non-stationary Covariance Function , 2016, Mathematical Geosciences.

[22]  Carlo Gatta,et al.  Unsupervised Deep Feature Extraction for Remote Sensing Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Hermann Kaufmann,et al.  Hyperspectral REE (Rare Earth Element) Mapping of Outcrops - Applications for Neodymium Detection , 2015, Remote. Sens..

[24]  Andrea Vedaldi,et al.  MatConvNet: Convolutional Neural Networks for MATLAB , 2014, ACM Multimedia.

[25]  Sildomar T. Monteiro,et al.  Mapping Layers of Clay in a Vertical Geological Surface Using Hyperspectral Imagery: Variability in Parameters of SWIR Absorption Features under Different Conditions of Illumination , 2014, Remote. Sens..

[26]  Richard J. Murphy,et al.  Multiple endmember spectral unmixing within a multi-task framework , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[27]  Carlo Gatta,et al.  Unsupervised deep feature extraction of hyperspectral images , 2014, 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[28]  Sildomar T. Monteiro,et al.  Consistency of Measurements of Wavelength Position From Hyperspectral Imagery: Use of the Ferric Iron Crystal Field Absorption at $\sim$900 nm as an Indicator of Mineralogy , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Sildomar T. Monteiro,et al.  Combining strong features for registration of hyperspectral and lidar data from field-based platforms , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[30]  D. Schneider,et al.  THE BENEFITS OF TERRESTRIAL LASER SCANNING AND HYPERSPECTRAL DATA FUSION PRODUCTS , 2012 .

[31]  Joseph N. Wilson,et al.  Using physics-based macroscopic and microscopic mixture models for hyperspectral pixel unmixing , 2012, Defense + Commercial Sensing.

[32]  Sildomar T. Monteiro,et al.  Evaluating Classification Techniques for Mapping Vertical Geology Using Field-Based Hyperspectral Sensors , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Richard J. Murphy,et al.  Classification of Hyperspectral Imagery Using GPs and the OAD Covariance Function with Automated Endmember Extraction , 2011, 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence.

[34]  Fabio Del Frate,et al.  Feature reduction of hyperspectral data using Autoassociative neural networks algorithms , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[35]  Manuel Graña,et al.  Two lattice computing approaches for the unsupervised segmentation of hyperspectral images , 2009, Neurocomputing.

[36]  Harald van der Werff,et al.  Assessing the Influence of Reference Spectra on Synthetic SAM Classification Results , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Marco Diani,et al.  An unsupervised algorithm for hyperspectral image segmentation based on the Gaussian mixture model , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[38]  Chein-I Chang,et al.  An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis , 2000, IEEE Trans. Inf. Theory.

[39]  T. Tu Unsupervised signature extraction and separation in hyperspectral images: a noise-adjusted fast independent component analysis approach , 2000 .

[40]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.

[41]  J. Boardman,et al.  Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm , 1992 .

[42]  Christian Rogass,et al.  Hyperspectral Rare Earth Element Mapping of Three Outcrops at the Fen Complex, Norway: Calcitic, Dolomitic, and Ankeritic Carbonatites , 2016 .

[43]  Claude Cariou,et al.  Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping , 2014 .

[44]  Léon Bottou,et al.  Large-Scale Machine Learning with Stochastic Gradient Descent , 2010, COMPSTAT.

[45]  Sildomar T. Monteiro,et al.  On the development of a hyperspectral library for autonomous mining systems , 2009 .

[46]  T. Kurz,et al.  GEOLOGICAL OUTCROP MODELLING AND INTERPRETATION USING GROUND BASED HYPERSPECTRAL AND LASER SCANNING DATA FUSION , 2008 .

[47]  Robert A. Schowengerdt,et al.  Remote sensing, models, and methods for image processing , 1997 .