Heat transport of the kagom\'{e} Heisenberg quantum spin liquid candidate YCu$_3$(OH)$_{6.5}$Br$_{2.5}$: localized magnetic excitations and spin gap

The spin-1/2 kagom´e Heisenberg antiferromagnet is generally accepted as one of the most promising two-dimensional models to realize a quantum spin liquid state. Previous experimental efforts were almost exclusively on only one archetypal material, the herbertsmithite ZnCu 3 (OH) 6 Cl 2 , which unfortunately suffers from the notorious orphan spins problem caused by magnetic disorders. Here we turn to YCu 3 (OH) 6 . 5 Br 2 . 5 , recently recognized as another host of a globally undistorted kagom´e Cu 2+ lattice free from the orphan spins, thus a more feasible system for studying the intrinsic kagom´e quantum spin liquid physics. Our high-resolution low-temperature thermal conductivity measurements yield a vanishing small residual linear term of κ/T ( T → 0), and thus clearly rule out itinerant gapless fermionic excitations. Unusual scattering of phonons grows exponentially with temperature, suggesting thermally activated phonon-spin scattering and hence a gapped magnetic excitation, consistent with a Z 2 quantum spin liquid ground state. Additionally, the analysis of magnetic field impact on the thermal conductivity reveals a field closing of the spin gap, while the excitations remain localized.

[1]  Yuesheng Li,et al.  Gapless spin liquid behavior in a kagome Heisenberg antiferromagnet with randomly distributed hexagons of alternate bonds , 2021, Physical Review B.

[2]  S. Y. Li,et al.  Quantum Critical Magnetic Excitations in Spin-1/2 and Spin-1 Chain Systems , 2021, 2112.01876.

[3]  S. Nishimoto,et al.  Thermal transport of the frustrated spin-chain mineral linarite: Magnetic heat transport and strong spin-phonon scattering , 2021, Physical Review B.

[4]  Z. Meng,et al.  Possible Dirac quantum spin liquid in a kagome quantum antiferromagnet YCu$_3$(OH)$_6$Br$_2$[Br$_{x}$(OH)$_{1-x}$] , 2021, 2107.11942.

[5]  Y. Matsuda,et al.  Universal scaling of the specific heat in $S=1/2$ quantum kagome antiferromagnet herbertsmithite , 2021, 2106.07223.

[6]  S. Y. Li,et al.  Heat Transport in Herbertsmithite: Can a Quantum Spin Liquid Survive Disorder? , 2021, Physical review letters.

[7]  J. Mi,et al.  Quantum spin liquid candidate YCu3(OH)6Br2[Br (OH)1−] (x ≈ 0.51): With an almost perfect kagomé layer , 2020 .

[8]  Yuesheng Li,et al.  Spin liquids in geometrically perfect triangular antiferromagnets , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  P. Mendels,et al.  Gapless ground state in the archetypal quantum kagome antiferromagnet ZnCu3(OH)6Cl2 , 2019, Nature Physics.

[10]  C. Hess Heat transport of cuprate-based low-dimensional quantum magnets with strong exchange coupling , 2018, Physics Reports.

[11]  R. Moessner,et al.  A Field Guide to Spin Liquids , 2018, Annual Review of Condensed Matter Physics.

[12]  Z. R. Yang,et al.  Field-Driven Quantum Criticality in the Spinel Magnet ZnCr_{2}Se_{4}. , 2018, Physical review letters.

[13]  S. Y. Li,et al.  Ultralow-Temperature Thermal Conductivity of the Kitaev Honeycomb Magnet α-RuCl_{3} across the Field-Induced Phase Transition. , 2017, Physical review letters.

[14]  S. White,et al.  Disorder-Induced Mimicry of a Spin Liquid in YbMgGaO_{4}. , 2017, Physical review letters.

[15]  Yi Zhou,et al.  Quantum spin liquid states , 2016, 1607.03228.

[16]  Huan He,et al.  Gapped spin liquid with Z 2 topological order for the kagome Heisenberg model , 2016, 1606.09639.

[17]  L. Balents,et al.  Quantum spin liquids: a review , 2016, Reports on progress in physics. Physical Society.

[18]  M. Zaletel,et al.  Signatures of Dirac cones in a DMRG study of the Kagome Heisenberg model , 2016, 1611.06238.

[19]  M. Norman Colloquium : Herbertsmithite and the search for the quantum spin liquid , 2016, 1604.03048.

[20]  T. Han,et al.  Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet , 2015, Science.

[21]  S. Sorella,et al.  Gapless spin-liquid phase in the kagome spin-(1)/(2) Heisenberg antiferromagnet , 2012, 1209.1858.

[22]  Daniel G. Nocera,et al.  Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet , 2012, Nature.

[23]  Leon Balents,et al.  Identifying topological order by entanglement entropy , 2012, Nature Physics.

[24]  Ying Ran,et al.  Z 2 spin liquids in the S=(1)/(2) Heisenberg model on the kagome lattice: A projective symmetry-group study of Schwinger fermion mean-field states , 2011, 1104.1432.

[25]  Yuji Matsuda,et al.  Highly Mobile Gapless Excitations in a Two-Dimensional Candidate Quantum Spin Liquid , 2010, Science.

[26]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[27]  P. Mendels,et al.  Quantum kagome antiferromagnet : ZnCu3(OH)6Cl2 , 2010, 1107.3038.

[28]  P. Lee An End to the Drought of Quantum Spin Liquids , 2008, Science.

[29]  Ying Ran,et al.  Projected-wave-function study of the spin-1/2 Heisenberg model on the Kagomé lattice. , 2006, Physical review letters.

[30]  D. Nocera,et al.  Spin dynamics of the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2. , 2006, Physical review letters.

[31]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[32]  D. Nocera,et al.  A structurally perfect S = (1/2) kagomé antiferromagnet. , 2005, Journal of the American Chemical Society.

[33]  S. Xiong,et al.  Power-law localization in two and three dimensions with off-diagonal disorder , 2001 .

[34]  F. Mila Quantum spin liquids , 2000 .

[35]  M. S. Singh,et al.  Three-sublattice order in triangular- and Kagomé-lattice spin-half antiferromagnets. , 1992, Physical review letters.

[36]  C. A. Murray,et al.  Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions , 1979 .

[37]  A. Grimm Phonon scattering by crystal surfaces , 1970 .

[38]  P. Thacher Effect of Boundaries and Isotopes on the Thermal Conductivity of LiF , 1967 .

[39]  R. Pohl INFLUENCE OF F CENTERS ON THE LATTICE THERMAL CONDUCTIVITY IN LiF , 1960 .