Intracellular Transport: New Tools Provide Insights into Multi-motor Transport

[1]  G Holmes,et al.  DISTURBANCES OF VISUAL ORIENTATION , 1918, The British journal of ophthalmology.

[2]  A. Hudspeth,et al.  Movement of microtubules by single kinesin molecules , 1989, Nature.

[3]  M G Rosa,et al.  Visuotopic organisation of striate cortex in the marmoset monkey (Callithrix jacchus) , 1996, The Journal of comparative neurology.

[4]  M G Rosa,et al.  Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti). , 1997, Journal of neurophysiology.

[5]  D. V. van Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system. , 1997, Nature.

[6]  P. Rakic,et al.  Molecular Evidence for the Early Specification of Presumptive Functional Domains in the Embryonic Primate Cerebral Cortex , 1999, The Journal of Neuroscience.

[7]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[8]  D. L. Adams,et al.  A Precise Retinotopic Map of Primate Striate Cortex Generated from the Representation of Angioscotomas , 2003, The Journal of Neuroscience.

[9]  M. Welte,et al.  Bidirectional Transport along Microtubules , 2004, Current Biology.

[10]  Paul R. Selvin,et al.  Kinesin and Dynein Move a Peroxisome in Vivo: A Tug-of-War or Coordinated Movement? , 2005, Science.

[11]  Marcello G P Rosa,et al.  Brain maps, great and small: lessons from comparative studies of primate visual cortical organization , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[12]  E. L. Schwartz,et al.  Multi-area visuotopic map complexes in macaque striate and extra-striate cortex , 2006, Vision Research.

[13]  Enrico Gratton,et al.  Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors. , 2006, Biophysical journal.

[14]  Y. Goldman,et al.  Processive bidirectional motion of dynein–dynactin complexes in vitro , 2006, Nature Cell Biology.

[15]  Samara L. Reck-Peterson,et al.  Single-Molecule Analysis of Dynein Processivity and Stepping Behavior , 2006, Cell.

[16]  B. C. Carter,et al.  Multiple-motor based transport and its regulation by Tau , 2007, Proceedings of the National Academy of Sciences.

[17]  John M. Walker,et al.  Molecular Motors , 2007, Methods in Molecular Biology™.

[18]  Samara L. Reck-Peterson,et al.  Force-Induced Bidirectional Stepping of Cytoplasmic Dynein , 2007, Cell.

[19]  Alex R. Wade,et al.  Two-dimensional mapping of the central and parafoveal visual field to human visual cortex. , 2007, Journal of neurophysiology.

[20]  Melanie J. I. Müller,et al.  Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors , 2008, Proceedings of the National Academy of Sciences.

[21]  Xiaolin Nan,et al.  Organelle tracking in a living cell with microsecond time resolution and nanometer spatial precision. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  Reinhard Lipowsky,et al.  Transport of Beads by Several Kinesin Motors , 2007, Biophysical journal.

[23]  I. A. Telley,et al.  Processive kinesins require loose mechanical coupling for efficient collective motility , 2008, EMBO reports.

[24]  Katrin Amunts,et al.  Locating the functional and anatomical boundaries of human primary visual cortex , 2009, NeuroImage.

[25]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[26]  Roop Mallik,et al.  Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes , 2009, Proceedings of the National Academy of Sciences.

[27]  Yosuke Tanaka,et al.  Molecular Motors in Neurons: Transport Mechanisms and Roles in Brain Function, Development, and Disease , 2010, Neuron.

[28]  Michael Breakspear,et al.  Modeling Magnification and Anisotropy in the Primate Foveal Confluence , 2010, PLoS Comput. Biol..

[29]  Pamela E. Constantinou,et al.  Two kinesins transport cargo primarily via the action of one motor: implications for intracellular transport. , 2010, Biophysical journal.

[30]  Adam G. Hendricks,et al.  Motor Coordination via a Tug-of-War Mechanism Drives Bidirectional Vesicle Transport , 2010, Current Biology.

[31]  T S Davis,et al.  Multiple factors may influence the performance of a visual prosthesis based on intracortical microstimulation: nonhuman primate behavioural experimentation , 2011, Journal of neural engineering.

[32]  Samara L. Reck-Peterson,et al.  Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold , 2012, Science.

[33]  Omar H. Butt,et al.  The Retinotopic Organization of Striate Cortex Is Well Predicted by Surface Topology , 2012, Current Biology.

[34]  Adam G. Hendricks,et al.  Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors , 2012, Proceedings of the National Academy of Sciences.

[35]  R. Mallik,et al.  Molecular Adaptations Allow Dynein to Generate Large Collective Forces inside Cells , 2013, Cell.

[36]  Tristan A. Chaplin,et al.  Representation of the visual field in the primary visual area of the marmoset monkey: Magnification factors, point‐image size, and proportionality to retinal ganglion cell density , 2013, The Journal of comparative neurology.